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Abstract

A methodology for the context-aided tracking of ground vehicles in remote air-

borne imagery is developed in which a background model is inferred from hyperspec-

tral imagery. The materials comprising the background of a scene are remotely identi-

fied and lead to this model. Two model formation processes are developed: a manual

method and a novel autonomous method that exploits an emerging adaptive, multiple-

object-spectrometer instrument. A multiple-hypothesis-tracker is incorporated, which

utilizes background statistics to form track costs and associated track maintenance

thresholds. Traditionally, these statistics are uniform constants, but the advent of the

background model allows for spatially-varying statistics. In an experiment designed

to isolate the problem into a simple and parametric single-target situation, context-

aided tracking is shown to improve aggregate tracking performance by 50% in certain

operating conditions. A semi-automated background modeling approach is shown to

qualitatively arrive at a reasonable background model with minimal operator inter-

vention. A novel, adaptive, and autonomous approach is given which converges to a

66% correct background model in 1
18

th
the time of the baseline – a 95% reduction in

sensor acquisition time – then transitions to the 100% correct model in the steady-

state. Finally, the context-aided system is demonstrated in a high-fidelity tracking

testbed. The context-aided tracking improves certain aggregate tracking metrics by

4% relative to a system using uniform background statistics – an important finding

nevertheless diluted by benign content in the scenario. Another metric is proposed as

the most salient measure of performance gain in the context-aided system, showing a

dramatic 30% reduction in error relative to the best-performing uniform background

statistic system. The analysis demonstrates that context-aided tracking with adaptive

hyperspectral data is a viable approach.
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Context-Aided Tracking with

Adaptive Hyperspectral Imagery

I. Introduction

The requirement to remotely track ground vehicles within urban environments is

becoming increasingly pervasive in both civilian and military contexts. These envi-

ronments are typified by high vehicle density, agility, and diversity, as well as frequent

occlusions. There exists a stark contrast between tracking missions conceived by the

United States Air Force (USAF) several decades ago and those encountered opera-

tionally today. Many currently operational USAF systems were designed to detect

and track foreign military ground order of battle (GOB) targets. While camouflage,

concealment, and deception (CC&D) techniques can make these targets difficult to

detect, they frequently exist in isolated, rural environments. They are also explicitly

military in appearance and employment. Today’s missions, however, often consist

of warfare against an asymmetric force – a concept which became more pervasive

during the last decade’s global war on terrorism (GWOT). The threat, then, may

be embedded within a crowded urban environment and assume the appearance and

behavior of daily civilian life. In this context, the ability to prosecute a threat is best

enabled by vigilantly maintaining awareness of all entities within the area of regard.

Indeed, the stated USAF science and technology (S&T) vision is, “Anticipate, find,

fix, track, target, engage, and assess anything, anywhere, anytime” (AF2T2EA4) [8].

In this concept, every available intelligence cue must be “force multiplied” by tracking

systems, which are increasingly called upon to be persistent, pervasive, and highly ac-

curate with respect to track identities. Simply put, the tracking system must maintain

a strict one-to-one mapping between objects in the area of regard, and unique track

identities within the system. In order to realize the AF2T2EA4 mandate, the Air

Force Research Laboratory (AFRL) has developed eight focused long term challenges
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(FLTC), two of which are directly motivated by the urban tracking challenge [48]

(emphasis added):

FLTC#2, Unprecedented Proactive Surveillance and Reconnaissance, is
focused on the ability to continuously detect, track and ID critical
threats to anticipate and deliver effects anywhere, including within an
anti-access environment.

FLTC #3, Dominant Difficult Surface Target Engagement/Defeat, is fo-
cused on the ability to deliver selectable and scaleable non-lethal or lethal
effects against adversaries and/or their support activities, improvised ex-
plosive devices (IEDs), and chemical, biological, radiological, and nuclear
explosive (CBRNE) threats in an urban warfare environment.

Finally, in the Tier-1 Strategic S&T Goals for AFRL, the highest priority 2015 Strate-

gic Goal for multi-layer sensing architectures is stated as [8] (emphasis added):

Demonstrate a layered and flexible sensing architecture that responds to
the commanders intent by anticipating, detecting, continuously track-
ing, identifying, and precisely locating – with high confidence – greater
than 80% of selected high-value difficult targets (e.g., urban, low-observable
cruise missiles, buried); initially to be demonstrated in the air domain.

1.1 Problem Statement and Key Challenges

While the USAF is well poised to meet the strategic goals of the S&T vision

into 2015 and beyond, there remains a subtlety of AF2T2EA4 which will remain chal-

lenging for the foreseeable future: mission-relevant tracker performance. Concisely,

the problem statement of this thesis is to quantify the negative impact of background

elements on tracker effectiveness, and to lessen that impact through the use of context.

Much of what is known of tracking system capabilities and performance arise

from the earliest – and relatively constrained – tracking problems such as air defense,

and air-to-air engagement systems. These problem domains began to test the ca-

pability of tracking algorithms to handle several targets in the presence of clutter.

Within these paradigms, the key tracking performance metrics have generally dealt

with how accurately the tracker estimates the state of a moving object. However,
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the notion of tracking “anything, anytime, anywhere”, e.g., difficult surface targets

in the urban environment, “with high confidence” calls for a redefinition of tracker

performance. In this problem domain, high kinematic – i.e., position and velocity

– accuracy is merely a prerequisite rather than the end goal. The more challenging

problem is to maintain tracks with pure identity through ambiguity, e.g., merging

targets, and severe occlusion. This can be observed as a chain of custody, in which

the identity of each object must be consistent for as long as it is tracked. The fail-

ure to preserve a single, consistent identity for an object has negative consequences

in forensic applications, e.g., tracking a hostile vehicle backwards in time from the

scene of an attack to its origin. Similarly, rules of engagement (ROE) enforce a strict

chain of custody on a target as it is tracked by an ISR system through handoff to a

strike platform for prosecution. Even a single break in the chain of custody results in

mandatory reestablishment of the engagement – and possibly a failed strike. There

exist challenges that do little to degrade kinematic accuracy, but play havoc with the

purity of track identities:

• Track identity loss occurs when the observations of an object no longer support

the tracker’s ability to maintain the track, and it is deleted. Subsequently, the

measurements resume and a new track with a new identity is formed. Here,

the chain of custody is broken for that object, and the tracker’s estimate of the

number of objects will be inflated. Certainly there are cases in which this is

unavoidable, e.g., a vehicle disappears within a parking garage for an extended

period of time. Reestablishing the proper identity to the reemerging vehicle in

such a challenging case is perhaps possible with feature-aided tracking (FAT)

and track stitching techniques. However, there exists a broad family of cases –

e.g., a vehicle travelling underneath a moderately long and dense tree canopy

causing frequent measurement loss – in which the context supports less aggres-

sive track deletion in hopes of coasting the track through unscathed.

• Track swaps occur when closely spaced objects meet and exchange track iden-

tities. Here, the chain of custody is polluted for both tracks.
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• Track divergence occurs when the observations of an object no longer support

tracking, yet the tracker does not delete the track quickly enough. Instead, the

track coasts until it encounters the measurements of a different object, which it

locks onto. Here, the chain of custody is polluted for the track, and the tracker’s

estimate of the number of objects will be understated.

There exists, then, a strong motivation for providing the tracker with as much

information as possible with which to make sound track maintenance decisions. All

other things being equal, a tracker that knows under which circumstances to delete

a track quickly, and when to aggressively coast a track, is likely to have better track

identity performance than a tracker without such information. While there are cer-

tainly many ways to gain this information and then to apply it to the tracking logic,

an especially attractive approach is to use a mechanism which already exists in the

tracker and has some analytical meaning. The tracking systems of interest in this

study are probabilistic in nature and therefore form statistical models of all elements

of the system; this includes the background itself, as well as the manner in which it

affects the measurement process. Using the term “context” to refer to these properties

of the background, the application of these properties is context-aided tracking (CAT).

Primarily, CAT seeks to improve tracker performance by emphasizing track identity

purity. The types of background statistics relevant to CAT have much to do with

the observation mechanism – i.e., the sensor and signal processor – and are difficult

to measure directly. One approach is to learn these statistics over time from the

tracking system itself. This learning process, however, is partially hampered with-

out the corresponding truth of the targets themselves. A more abstract approach to

forming background statistics is to determine a mapping from classes of background

objects, e.g., trees, roads, buildings, into the functional impact those objects have on

the target tracking process. In this approach, it is sufficient to know the placement of

background objects in the scene and then to apply the mapping to arrive at the CAT

statistics. Fortunately, remote hyperspectral sensing is well suited to the challenge of

determining the location of background elements.
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The track identity problem is further compounded by the complexity of the

urban tracking challenge. While it would be satisfying to assume that tracker com-

putational complexity is a linear function of the number of targets, O(n) in computer

science parlance – that is unfortunately not the case. In fact, a multiple-target track-

ing system must manage the combinatorics between tracks and measurements at each

frame, and possibly do so over a window of history frames. The upper-bound on

complexity is O(n2), and perhaps far worse. The foundation for the solution to this

problem has fortunately already been laid in the form of the multiple hypothesis

tracker.

1.2 Current System Capabilities

1.2.1 Hyperspectral Imaging Sensors. Hyperspectral imaging (HSI) sen-

sors are a relatively new field of remote sensing technology. The phenomenology

of hyperspectral sensing is discussed in Section 2.1. Applications for HSI sensors

fall into distinct civil and military categories. Classical military applications of HSI

technology lie within measurement and signature intelligence (MASINT). These em-

ployments tend to utilize expensive HSI sensors on a small population of highly clas-

sified intelligence, surveillance, and reconnaissance (ISR) vehicles. The tasking and

exploitation of MASINT sensors generally occurs offline via dedicated ISR organiza-

tions which are not a time-critical part of the AF2T2EA4 loop. The National Air and

Space Intelligence Center (NASIC) is an example of a military organization concerned

with MASINT. These take advantage of HSI sensor capabilities to detect material

and chemical signatures which manifest subtly in reflected visible or infrared light.

Counter camouflage, concealment and deception CCC&D techniques use HSI to de-

tect targets which were intentionally hidden from sight. CBRNE detection techniques

use HSI to detect the evidence of weapons of mass destruction (WMD) manufacture or

deployment, e.g., plumes or runoff. As the first tactical HSI sensors become available,

emerging military uses include target detection via a priori signature matching, and

improvised explosive device (IED) detection, which is concerned with detecting the
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evidence of IED emplacement. Sensors which the USAF currently uses for research

or as operational systems include:

• Airborne Cueing and Exploitation System Hyperspectral (ACES HY), providing

HSI capabilities for the MQ-1 Predator Unmanned Aircraft System (UAS) and

other manned and unmanned aircraft. FY09-FY15 estimate $35M [5].

• The AFRL Spectral Infrared Remote Imaging Transition Testbed (SPIRITT).

Prior years $45M, $16M FY10-FY11 [5].

• The Hyperspectral Collection and Analysis System (HYCAS) advanced concept

technology demonstration (ACTD), which employs an HSI instrument and the

capability of “tasking, processing, exploitation, and dissemination, the TPED

side of really operationalizing and institutionalizing the use of hyperspectral” [1].

• The AFRL Advanced Responsive Tactically Effective Military Imaging Spec-

trometer (ARTEMIS), which is a tactically-taskable HSI instrument aboard the

TacSat-3 satellite [38].

Civil uses for HSI sensors have traditionally been closely aligned with academic

earth science studies. The exemplary civil HSI instrument is the National Aeronau-

tics and Space Administration (NASA) AVIRIS (Airborne Visible/Infrared Imaging

Spectrometer), which images the spectral region from 0.4µ to 2.5µ at 0.01µ resolu-

tion. While AVIRIS played a role as an airborne testbed for instruments with military

purposes [51], it was also designed to advance environmental, geological, and pollu-

tion studies [21]. Indeed, the notion of using HSI imagery to derive thematic maps,

i.e., the material composition of broad areas of land, is foundational to this study

in context-aided-tracking. AVIRIS products have also historically been important in

the study of potential markers for climate change [58]. Many other civil airborne

HSI sensors are available for hire today, and serve in academic, agricultural – such as

precision farming [25], oil exploration [19], and oil spill mitigation [49].
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1.2.2 Persistent Surveillance. A significant paradigm shift in military doc-

trine is taking place, wherein certain “reconnaissance” missions are being supplanted

by “persistence” missions [40]. Persistent surveillance implies continuous, multimodal,

integrated data collection with low-latency dissemination and on-demand exploita-

tion. A variety of sensors in the USAF inventory are meeting this need, and new

research efforts are set to bolster the capability:

• The Joint Surveillance Target Attack Radar System (Joint STARS) is an air-

borne radar system that provides persistent ground surveillance of a corps-sized

region. [7]

• Gorgon Star provides city-sized broad area surveillance capability for Combatant

Commanders, $115M FY09-FY11 [5].

• Wide Area Airborne Surveillance (WAAS) Program of Record, providing flex-

ible, end-to-end, persistent surveillance of city-sized areas on various manned

and unmanned aircraft, $253M FY11-FY15 [5].

• The Autonomous Real-time Ground Ubiquitous Surveillance-Imaging System

(ARGUS-IS) is a DARPA-funded, gigapixel-class color video imager with fram-

erates up to 12Hz, providing unprecedented persistent surveillance capabilities

aboard an A-160 Hummingbird UAS [34]. The Autonomous Real-time Ground

Ubiquitous Surveillance - Infrared (ARGUS-IR) enhancement adds wide-area

night surveillance capabilities. Combined $58M FY10-FY12 [6].

Persistent surveillance provides the crucial underpinning moving intelligence (MOVINT)

required for ground target tracking. As such, it represents another foundational ele-

ment to this study in CAT.

1.2.3 GIS. Geographic information systems (GIS) are databases which con-

tain information tied to a terrestrial spatial coordinate system. There are many civil

uses for GIS, including municipal planning, utilities management, and disaster man-

agement. Military uses for GIS include mission planning, logistics, targeting, and to
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support intelligence collection and processing. The Department of Defense (DOD)

has largely allocated geographic intelligence (GEOINT) creation duties to the Na-

tional Geospatial-Intelligence Agency (NGA). GEOINT is derived from many types

of sensors and platforms operating in many different modalities, including airborne

HSI. Once in a GIS database, this data has generally been heavily processed to re-

duce its size or to abstract the signal into a more functional representation. With

respect to CAT, GIS data is the first-order source for context information, to include

road networks, target hospitability, and land-cover. Since GIS products are gener-

ally produced according to a reconnaissance and processing schedule, they may lack

contemporary changes and diurnal environmental effects. The notion of extracting

contemporary GIS from a theater-level HSI asset is relatively new, and has been mo-

tivated by the increasing availability of such sensors. This study on CAT will further

explore the utility of GIS data derived from contemporary HSI in a semi-automated

or automated fashion.

1.3 Contributions

Here, two promising areas of research are combined to cope with the challenges

of tracking difficult ground targets in an urban context: context-aided tracking and

adaptive hyperspectral sensing. The availability of novel adaptive hyperspectral sen-

sors has led to new sensor resource management methods providing spatially varying

background statistics of the surveillance region. These statistics are then incorpo-

rated into a multiple hypothesis tracking system to enable more robust tracking in

the presence of vehicle occlusion typically encountered in urban environments. An

overview of the system architecture is given in Figure 1.1; additional detail of the

background modeling architecture is given in Figure 1.2. These architecture Figures

will be referenced throughout this document to aid the reader in understanding the

development of the primary functions.

In an experiment designed to isolate the problem into a simple and parametric

single-target situation, context-aided tracking will be clearly shown to improve aggre-
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*Although shown for completeness in this
architecture, demonstrated application of
the adaptive background modeling ap-
proach into the multiple hypothesis track-
ing testbed is left for future study.

*

Figure 1.2

Figure 1.1: An illustration of the tracking architecture in this study. The key differ-
entiators of the systems are the derivation of background statistics and the requisite
sensors. Clockwise from the lower left: The non-context-aided tracking system utilizes
uniform background statistics and requires a panchromatic sensor. This represents
the baseline capability. The semi-automated context-aided tracking system utilizes
context-aided statistics. It requires a panchromatic sensor as well as a hyperspectral
sensor, which may generate online (mission) or offline (pre-mission) data. The adap-
tive context-aided tracking system also uses context-aided statistics. It requires an
adaptive hyperspectral sensor, providing both hyperspectral and panchromatic data.
All tracking systems incorporate a multiple hypothesis tracker, which performs a core
set of tracking, association, and maintenance functions.
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Figure 1.2: An illustration of the two background modeling architectures. The semi-
automated architecture is characterized by a single-pass, marginal operator input,
and a dense HSI data cube. In contrast, the adaptive architecture is iterative, uses
no operator input, and requires an adaptive HSI sensor.
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gate tracking performance by 50% in certain operating conditions, and not to harm

aggregate performance by any statistical amount in any operating condition. This

finding, as well as related insight into the behavior of a context-aided system, is a key

contribution to the tracking community.

A semi-automated background modeling approach will be shown to qualitatively

arrive at a very reasonable background model with minimal operator intervention. A

more novel approach – which is adaptive and purely autonomous – will be shown, and

is an important contribution of this thesis. A new sensor resource management tech-

nique will be presented in support of this adaptive background modeling capability.

A case will be made for its zero-latency ability to deliver a model “at-any-time” in

contrast to a “just-in-time” technique with much higher latency. This “at-any-time”

SRM will be shown to converge to a 66% correct adaptive background model in 1
18

th

the time of the “just-in-time” approach – a 95% reduction in sensor acquisition time.

A hybrid technique will be suggested which transitions from the 66% answer to the

100% answer as soon as it has been fully acquired, resulting in a full-performance

steady-state. This SRM is also a novel and important contribution of this thesis.

Finally, the context-aided system will be demonstrated in a high-fidelity tracking

testbed. An important finding regarding the impact of context-aiding on single-stage

multiple hypothesis tracking systems will be explained and resolved quite success-

fully. This key finding and solution is an important contribution. The final analysis

will show that context-aided tracking improves certain aggregate tracking metrics by

4% relative to a system using uniform background statistics. These metrics will be

described as important, but heavily diluted by benign content in the scenario. An-

other metric will be proposed as the most salient measure of performance gain in

the context-aided system. This metric will show a dramatic 30% reduction in er-

ror by the context-aided system relative to the best-performing uniform background

statistic system. This is perhaps the most important contribution of the thesis, and

demonstrates that context-aided tracking with adaptive hyperspectral data is indeed

a viable approach.
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1.4 Organization

This document is organized into five chapters. Chapter I serves as an introduc-

tion to the work. The problem statement and several key challenges are presented.

A brief overview of current system capabilities is given. The contributions of this

research effort are listed.

Chapter II reviews background information which is helpful for subsequent

developments. Topics include hyperspectral sensing, multiple-hypothesis tracking,

context-aided tracking, hyperspectral exploitation, and data synthesis.

Chapter III provides the fundamental theory behind the techniques involved in

this study. The multiple hypothesis tracker is analyzed in more detail, with an em-

phasis on track maintenance and background statistics. Hyperspectral exploitation is

presented in the context of deriving scene context from hyperspectral data, to include

post-processing and material classification. Next, context aided tracking is developed

more fully, with an emphasis on background modeling to derive context dependent

tracking statistics. Finally, the notion of adaptive background segmentation with a

novel adaptive hyperspectral sensor is introduced, including a brief discussion of the

requisite sensor resource manager.

Chapter IV presents the experimental design and results, which are intended to

explore the effects of context aided tracking on tracker performance. First, a para-

metric experiment is presented, in which an extensive Monte Carlo analysis demon-

strates the fundamental capabilities of context aided tracking. Next, a full tracking

experiment is performed, in which a mature, multiple hypothesis tracking testbed is

augmented with context aiding derived in a semi-automated fashion from synthetic

hyperspectral data.

A conclusion is given in Chapter V. The effort is summarized, identifying key

contributions to the field, and suggesting opportunities for future study. Appendix A

includes Matlabr code for the parametric experiment, which may be of use for further

studies.

12
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II. Background

2.1 Hyperspectral Sensing

Hyperspectral imaging (HSI) is a sensing technique which measures light in two

spatial dimensions, and one spectral dimension divided into N – typically more than

100 – discrete and narrow spectral bands. The resulting spectral image is commonly

referred to as a hyperspectral cube. In contrast, the more familiar concept of color

imaging generally divides the spectrum of light into three moderately wide bands:

red, green, and blue. Panchromatic imaging measures light in a single wide band,

forming a familiar grayscale signal. An illustration of HSI is given in Figure 2.1.

The spectral content of HSI data are well suited for material classification, de-

tecting camouflaged targets, and reacquiring previously observed targets. While there

are many methods to design hyperspectral imagers, dispersive spectrometers is the

type most frequently employed in remote airborne sensors. These instruments take ad-

vantage of the wavelength-dependent nature of light undergoing refraction or diffrac-

tion, as with a prism or grating. In order to use a two-dimensional electro-optical

focal plane array to capture this three-dimensional image, one spatial dimension is

generally restricted by a slit-shaped aperture whose orientation is complimentary to

that of the dispersion. By mechanically scanning the sensor in the cross-slit direc-

tion – as with a moving platform or a tilting mirror – the lost spatial dimension is

recovered, albeit at the expense of time. An obvious detriment of this approach is

that at any given moment, the field-of-view of the sensor is limited by the narrow slit,

and the revisit rate may be quite low. Traditional dispersive HSI is ill-posed for the

challenge of remotely tracking moving vehicles in urban environments due in part to

this limitation, as well as the high processing burden of full HSI cubes.

It has long been recognized that if the two spatial dimensions of the resulting

image are allowed to be sparse, i.e., several discrete objects of interest, then a continu-

ous field-of-view, non-scanned instrument can be realized. For instance, in a multiple

object spectrometer (MOS), the slit-shaped aperture is replaced with a mask consist-

ing of an open point for each object to be observed. Constraints on the distribution
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Figure 2.1: An illustration of hyperspectral imaging. In a red/green/blue (RGB)
imaging system, there are three component images (a) with spatial dimensions x and
y. Each of these images arises from the spectral response of the imager (b) in one of
three broad bands: red, green, and blue. In contrast, the output of a hyperspectral
imaging system is a cube (c) with three dimensions: spatial x and y, and a spectral
dimension λ. For each discrete spatial location in the cube, its hyperspectral signature
(d) is a measurement of light along the spectral dimension λ, and is a function of the
spectral wavelength measured in many narrow spectral bands (e).
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of points and spectral bandpass filters ensure that the spectra from multiple points

do not overlap. Historically, MOS instruments have been applied to sensing scenarios

with extremely deterministic platform/object relationships, e.g., astronomy.

With the advent of digital micromirror device (DMD) arrays (DMA), the Rochester

Institute of Technology Multi-Object Spectrometer (RITMOS) [36] instrument re-

places the aperture mask with millions of small mirrors, illustrated in Figure 2.2.

This has the advantage of extremely fast mask reorganization, as well as repurposing

the light “wasted” by the MOS to capture a panchromatic channel. The layout of the

RITMOS imaging elements are illustrated in Figure 2.3. This thesis discusses a no-

tional RITMOS-inspired instrument which is the Adaptive HSI Sensor element of the

background-modeling architecture in Figures 1.1 and 1.2. As in [45], this instrument

will be applied to the urban vehicle tracking problem.

2.2 Multiple-Hypothesis Tracking

Here, a tracking system will be described which forms the Multiple Hypothe-

sis Tracker (MHT) 1 element of the system architecture in Figure 1.1. The modern

ground-target tracking system employed in an airborne remote-sensing system is re-

sponsible for maintaining detailed knowledge of the state of many objects within an

area of regard. Practical tracking systems must perform several key functions: filter-

ing, gating, multiple-track to multiple-measurement data association, and automated

track initiation/deletion. Tracking literature is replete with treatments on these; [13]

is a comprehensive reference and bibliography.

Fundamentally, filtering is the process of deriving optimal estimates of the state

of a sensed object given measurements of that object in the presence of process and

measurement noise. A vast body of research has been invested into optimal estima-

1The tracking community has abstracted the term multiple hypothesis tracker (MHT) to refer
to any full tracking system which incorporates the multiple-hypothesis construct for deferred asso-
ciation uncertainty management. Here, the author will attempt to follow this convention. When
the association uncertainty management construct is being specifically referenced, the term MHT
construct will be used.
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Figure 2.2: An illustration of a small portion of a digital micromirror device array
(DMA). Here, all micro-mirrors are set towards a particular path (the righthand side)
except for the centermost micro-mirror. Incident light is predominantly steered to-
wards the righthand path, which is illustrated in red for several micro-mirrors near the
center. However, light incident upon the centermost micro-mirror is steered towards
the lefthand path. Although difficult to discern in this illustration, some very small
portion of light rays reflect off of vias or hinge structures between the micro-mirrors
and follow the wrong paths. This reduces the imaging performance of the overall
instrument.
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Figure 2.3: The Rochester Institute of Technology Multi-Object Spectrometer
(RITMOS), which incorporates two light paths: imaging and spectroscopy. Each
pixel is steered towards a light path independently via the digital micromirror device
(DMD).
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tion and predates modern digital computer systems – indeed, Gauss worked through

this problem over 200 years ago [22]. However, the fundamental basis for modern

filtering approaches is the Kalman filter [29]. The Kalman filter is an optimal, re-

cursive, minimal-mean-squared-error estimator founded in Bayesian statistics. Many

subsequent advances in tracking systems retain Kalman filtering techniques within

more complex architectures.

Gating is a data reduction method used to potentially reduce the number of

possible track-to-measurement associations in a tracking system. By employing a

gating technique, measurements which are highly unlikely to associate with a given

track are simply not considered for that association problem. Gating generally begins

with determining the distance between an estimated track state and all measurements.

Based on straightforward constraints, e.g., maximum target speed – and possibly

incorporating the uncertainty of the track state – unlikely measurements are excluded

from the gate.

Much of the complexity of the tracker arises from the incorporation of multiple

targets. For each measurement-to-track association, there is a resulting cost generally

related to some probabilistic distance between the track’s predicted state and the

measurement. This concept of cost is simply a convenient reversal to that of an asso-

ciation score and arises since cost is analogous to distance. For further convenience,

the cost is frequently expressed as a likelihood ratio and then as the logarithm of

that ratio. This form permits track costs to be easily composited in case multiple

filters are involved (such as a kinematic Kalman filter and a feature filter) and makes

recursive cost computation straightforward. Nontrivial composite association events

with multiple tracks and measurements – those that consist of missed measurements,

false alarms, object entrances/departures, and closely spaced tracks – frequently lack

an obvious measurement-to-track assignment solution. Instead, there is competition

between tracks and measurements which must be resolved via data association. A

set of these associations – a solution – assigns measurements to tracks (taking into

account missed detections and new tracks) and has a composite cost accounting for
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all tracks, normalized appropriately. Finally, many different solutions are possible

and can be ranked according to their composite costs. The global-nearest-neighbor

(GNN) solver simply uses the highest ranking of the solutions at each time. Since the

second and lower ranked solutions are discarded, this method has little hope of recov-

ering from an association error. The probabilistic data association filter (PDAF) [10]

attempts to do somewhat better than the GNN by incorporating several highly likely

solutions into a single answer. The joint probabilistic data association filter (JPDAF)

[20] is a necessary extension to the PDAF in order to handle the multiple-target case.

Using these techniques, a track may be influenced by multiple measurements which

fall within its gate. Conversely – and somewhat less intuitively – a measurement may

be used simultaneously to influence more than one track.

In contrast, the MHT construct [43] preserves many suboptimal association so-

lutions without combining them. This results in potentially many mutually-exclusive

hypotheses whose tracks may disagree with respect to measurement association his-

tory. To the extent that the various hypotheses capture different solutions to any

given assignment problem, that problem’s decision has been “deferred,” and its solu-

tion is “soft.” A particular decision outcome may rise or fall in favor as its associated

hypothesis incorporates new information over time. Practicality demands that the

weaker hypotheses be pruned away, and only a finite length of history is maintained.

Thus, the outcomes of any association problem will eventually reduce to one, which

becomes “firm.”

Automated track initiation and deletion is a collection of track maintenance al-

gorithms which identify emerging and departing tracks without the need for manual

intervention. Initiation is arguably the more difficult of the two problems and hence

is frequently divided into two stages: initialization and confirmation. Initialization

is the process of bootstrapping raw measurements into newly formed tracks. At its

simplest form – and leveraging the capacity of the MHT construct to withstand nu-

merous mutually-exclusive associations – it consists of forming a new track at each

measurement. These new tracks are necessarily zero-velocity and highly noisy and
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are extended according to normal gating rules at the next frame of data. Notably,

the MHT construct may be managing competition between mature extending tracks

in contention for the same measurements as the new tracks. Certainly these new

tracks will be far too prolific and messy to be reported to an operator, motivating

the second stage. The confirmation stage is handled via a variety of techniques. An

ad-hoc confirmation approach declares tracks firm once they have attained some num-

ber of successful updates, perhaps allowing for a small number of missed detections.

If more rigorous a priori knowledge of the track statistics are known, a track-cost-

based method based on the sequential probability ratio test (SPRT) [57] provides a

true analytical solution for track confirmation. The SPRT, if attainable, provides a

straightforward threshold against which to test the recursive track cost. It addition-

ally provides a rejection threshold to permanently reject the confirmation of a badly

performing track. The following hybrid confirmation approach is loosely based upon

the SPRT. The prototype-based confirmation uses the sequential testing structure,

but replaces the analytical thresholds with a prototypical track. This prototype track

is designed such that it has performed as badly as possible, e.g., missed as many

measurements as possible, but is still reasonable to confirm. Once confirmed, a track

is then eligible to be presented to the operator or other downstream consumer. It

may also receive special precedence in the association logic.

Track deletion is simply the reverse of the confirmation problem, and uses the

same family of techniques. A deleted track may be permanently removed from the

database and no longer presented to the operator or other downstream processes.

Deleted tracks may also be retained in the database for use with track “stitching”

techniques, but for the purpose of this research, track deletion is a permanent process.

2.3 Context-Aided Tracking

Research in the field of CAT has incorporated a broad set of techniques to apply

background information to the tracking problem. Many elements of a tracking system

are eligible for augmentation with scene context. The choice of which element or
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elements are to be aided with context is largely driven by the fidelity of the contextual

data and the practical limitations of the tracking system.

2.3.1 Detection Masking. In the AFIT thesis [41], target motion detection

was performed in persistent, wide-area motion imagery (WAMI) of an urban envi-

ronment. Due to challenging occlusion and parallax effects from buildings in the

post-registration imagery, the majority of the observed motion in such data may not

be target related at all. In such an extreme false-detection environment, the entire

downstream tracking system is under a heavy computational burden and prone to

error. Since GIS road network data is readily available for many urban areas, the

author chose a technique in which the known road centerline is dilated to create a

curb-to-curb road mask extending over the road network. Given three dimensional

building geometries – as is available from light-detection-and-ranging (LIDAR) – cou-

pled with good platform position information, the author was able to create a parallax

estimate of the buildings in any observation frame. The union of the negative of the

road mask with the parallax mask formed a comprehensive detection mask. This

mask served as a straightforward filter applied early in the motion detection stage

of the tracker, eliminating the majority of the false detections before they reach the

association stage. The remaining detections were on the road and not due to building

structure, and hence were more likely to be target related. Clearly a detection-stage

application of context is appropriate when the fidelity of the context data is sufficient

and the computational benefit is of high importance.

2.3.2 Association and Track Scoring. The multiple-measurement to multiple-

track association solution is based upon an ensemble of discrete initialization, update,

and missed-detection costs. The formulation of these costs is discussed at length in

Section 3.2. These costs are based upon estimates of certain statistics, such as tar-

get detectability, and prevalence of false detections. Since these statistics are very

likely to be spatially dependent, it stands to reason that the use of scene context may

improve their efficacy. This forms a key motivation for this thesis.
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2.3.3 Target State Estimation. A popular use of scene context is to esti-

mate hospitability, which is a high-level statistic combining a variety of factors. These

frequently include terrain, land-cover, and surface water features. It has classically

been used in a relatively low-spatial-frequency manner to cover large areas, e.g., a

particular 10km2 portion of a military operating theater may be flat with soil suit-

able for tactical vehicles – hence it is hospitable. In [30], the authors formulate a

target probability density function which directly incorporates hospitability into its

update function. Road network context is also eligible to be considered in target

state estimation. Introduction of such a network causes undesirable nonlinearities if

applied directly to the state estimation logic. However, in [42], an elegant solution to

this problem is proposed using pseudo-measurements [55]. These are carefully crafted

fictitious detections designed to nudge the state estimate towards a road.

2.3.4 Target Dynamics. In [15], CAT is applied to the problem of coop-

erative user tracking in cellular phone networks. The Euclidean state and dynamics

model has been replaced with a road-segment state and along-road dynamics model,

resulting in a much lower data transmission burden within the same error budget.

This road-constrained motion model technique is also used in “map-matching” ap-

plications such as consumer global positioning system (GPS) navigation aides. A

noncooperative version of this is used in [14] to data-mine road traffic sensors and

infer discrete vehicle tracks through large cities. Inferring plausible target destination

from GIS was studied in the AFIT thesis [37], in which prediction time horizons were

considered beyond those in which pure target kinematics was useful. The author ap-

plied graph-theory – such as Dijkstra’s shortest-path algorithm – to the road network

in order to predict target destinations. A related concept is that of track stitching,

where a track has been terminated and is later tested against a new emerging track

for feasible sameness. When the gap in time covered by the track stitch is large, the

context provided by the road network may be the most salient measure of feasibility.
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2.4 Hyperspectral Exploitation

2.4.1 Scene Classification. The goal of scene classification is to characterize

the scene context based on training samples. In training, a model is derived from spec-

tra with known or “supervised” material identity; discrete materials become “classes.”

In parametric classifiers, this model assumes some underlying density function – usu-

ally Gaussian; the quality (and even attainability) of the derived parameters is sub-

ject to the population size of the training data and the goodness-of-fit to the assumed

distribution. Non-parametric classifiers, such as the generalized-relevance-learning-

vector-quantization-improved (GRLVQI) method from [35], relax assumptions of the

underlying distribution and tend to tolerate smaller training populations.

The following subsections present several common, yet often effective, paramet-

ric classification schemes. These methods can work well in practice, depending on the

specific problem.

2.4.1.1 Linear Disciminant Functions. The linear discriminant func-

tions (LDF) assumes each class is distributed normally where each class has a unique

mean vector but that all classes have a common covariance matrix. The LDF defines

variables for a Gaussian distribution that are mostly “typical”. The prior probability

and mean of each class are computed via maximum likelihood and are defined as

π̂c =
Mc

M
, and (2.1)

µ̂c =
1

Mc

∑
x∈Xc

x (2.2)

respectively. The variance, on the other hand, is somewhat different. It is defined as

the sum of non-normalized outer products of each class normalized by the number

of samples less the number of classes. The reason for this modified normalization

term is due to the degrees of freedom lost in the computation of each of the C class

means. This form of the covariance follows that of the minimum variance unbiased
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estimate (MVUE) of the covariance.

∑̂
=

C∑
c=1

∑
x∈Xc

(x− µ̂c) (x− µ̂c)T
M − C (2.3)

By simplifying and isolating the discriminant for each of the several classes of inter-

est [27], the linear discriminant functions are formed:

δc (x) = ln (π̂c)−
1

2
µ̂Tc Σ−1µ̂c + xT Σ̂−1µ̂c. (2.4)

A decision is made by choosing the descriminant with the largest response.

2.4.1.2 Quadratic Disciminant Functions. The quadratic discriminant

functions (QDF) assumes each class is distributed Gaussian where the mean and

covariance of each class is computed from the training samples from the respective

classes. This method is effective if enough samples exists in each class to ensure an

invertible covariance matrix. For hyperspectral imagery, the samples are often too

few and the covariance matrix uninvertible.

One derives the QDF in the same manner as LDF. Since the covariance matrices

are not the same, they do not cancel in the log likelihood ratio test and the decision

is a quadratic function in x. The discriminant is described as:

δc (x) = −1

2
ln |Σ̂c|+ ln (π̂c)−

1

2
(x− µ̂c)T Σ̂c

−1
(x− µ̂c) , (2.5)

where |·| is the determinant operator. A decision is made by choosing the descriminant

with the largest response, just as in LDF [27].

2.4.1.3 Minimum Euclidean Distance Classifier. The minimum eu-

clidean distance (MED) classifier (also called the Minimum Distance classifier in the

literature) can be implemented with any number of similiarity measures or metrics,

e.g., the Mahalanobis distance. This particular classification method is simple yet
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surprisingly effective (see e.g., [35]). It makes the naive assumption that data are

distributed N (µc, I (n× n)), where µc is the mean of class c = 1 . . . C and there are

C classes.

The MED consists of two steps. The first is to compute µc:

µ̂c =
1

Mc

∑
x∈Xc

x. (2.6)

where Mc is the number of samples in class c. The second is to compute the Euclidean

distance between each sample in the image and each of the C mean vectors, one for

each class:

dc = ‖x− µc‖. (2.7)

The mean vector from the class that results in the smallest Euclidean distance is

selected as the winner. That is,

p = arg min
c

dc. (2.8)

2.4.2 Nonparametric Classifiers. Variants of the neural learning methods of

generalized learning vector quantization (GLVQ) by Sato and Yamada [50] have been

implemented. The specifics follow that of the generalized relevance learning vector

quantization (GRLVQ [26])-improved (GRLVQI) by Mendenhall and Merényi [35].

It offers improvements to GLVQ and GRLVQ by way of the addition of an equal

probabilistic learning process presented by DeSieno’s in his conscience learning [17]

process originally introduced for the unsupervised self organizing map (SOM) due to

Kohonen [32]. The methods implemented allows one to switch between the following

configurations:

• Baseline GLVQ with conscience learning as incorporated in GRLVQI in [35]
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• Baseline GLVQ with conscience learning and the in-class conditional update

method described in [35]

• Baseline GRLVQ with conscience learning as incorporated in GRLVQI in [35]

• Baseline GRLVQ with conscience learning and the in-class conditional update

method described in [35]

The GLVQ is a supervised learning paradigm that is an advancement of Koho-

nen’s [32] original LVQ’s. In particular, the methods employed here are extensions of

the so-called LVQ2.1, which is a form of LVQ that works to define decision boundaries

by way of a differential shifting strategy. This differential shifting strategy defines an

in-class and out-of-class winning prototype vector, and shift both the in-class winner

and out-of-class winner in such a way as to refine that decision boundary.

2.4.3 Abstracting Geographic Information from Hyperspectral Data. In the

AFIT thesis [28], an automated method of abstracting functional GIS information

from HSI data is presented. A particular focus of the effort was to provide a capability

that did not depend on a priori spectral signatures. Instead, the fundamental spectral

topology of the scene is learned through a SOM. Key spectral properties of vegetation

are applied to segment portions of the SOM such as trees and grass. A human operator

is then permitted to further segment the SOM by choosing training spectra from the

HSI data. This allows for the identification of functional classes such as roofs, roads,

and parking lots. Next, a morphological processing stage operates on the SOM-derived

spectral classification. The morphological processing uses heuristics tuned for each

class to increase the accuracy of the GIS output.

The ability to abstract GIS information is a fundamental precursor to the use

of HSI data for CAT, and will be extended in Section 3.4.1 of this thesis as back-

ground modeling. In contrast with the previous method, the background modeling

technique presented here is concerned with the application of the derived GIS to a

specific problem domain: CAT. As such, the focus here is on the estimation of useful

background statistics for the tracking system. Some novel capabilities of the previous
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effort, e.g., a road-finding method, are not applied here. A significant departure from

the previous method is taken here in adaptive background modeling, Section 3.4.2. In

adaptive background modeling, an emphasis is placed on the use of non-scene specific

a priori spectral signatures from common spectral libraries. This precludes the need

for operator training-spectra selection. Finally, an adaptive HSI instrument is inves-

tigated here for applicability to the background modeling challenge. This introduces

the possibility of an extremely rapid background modeling capability at some loss of

accuracy.

2.4.4 Feature-Aided Tracking. The automated target recognition (ATR)

community has pioneered many machine-learning and pattern-recognition methods

for identifying targets in largely unconstrained problem spaces. A dominant sensing

modality in this research has been HSI, for which mature techniques have existed in

the open literature for nearly a decade [44]. The tracking community, meanwhile,

has applied ATR techniques to the more constrained problem of FAT. The seminal

DARPA programs Video Verification of Identity VIVID [23,24] and NetTrack [3] have

demonstrated the viability of FAT in video and radar respectively. The application of

FAT techniques to HSI data has traditionally been difficult due to the low revisit rates

and processing latencies of HSI sensors. However, emerging sensing technologies [31]

and ever-shortening automated exploitation timelines have led to the emerging field

of HSI FAT [12,45].

In the AFIT thesis [54], the author presents a multiple-target tracking system

which – much like this thesis – combines HSI and panchromatic sensors to spectrally

augment the tracking capability. The architecture of the work included a baseline

kinematic tracking system which derived measurements from the panchromatic sen-

sor, and a hyperspectral target classification stage which collected and processed

infrequent target spectral-feature measurements. These feature measurements were

intended to resolve ambiguities which arise in kinematic tracking systems. In this

manner, the track-identification error that occurs during a kinematic track-swap is
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no longer viewed as irrevocable, but instead is corrected with HSI target features.

The author chose a fuzzy c-means [18] and SOM spectral classification approach, and

achieved approximately 30% performance gain from the HSI FAT technique.

While certainly synergistic with the prior work, this thesis explores the appli-

cation of HSI data to context-aided tracking rather than feature-aided tracking. The

HSI FAT study utilized measured HSI signatures in an expedient synthesized track-

ing study that captured the first-order effects of FAT. A significantly enhanced HSI

synthesis capability has been employed here using the Digital Imaging and Remote

Sensing Image Generation (DIRSIG) [52], as described in Section 4.2; it incorporates

a vastly larger number of targets in a high-fidelity simulation with proper atmospheric

and radiative transfer effects. The adaptive background modeling technique in this

thesis takes advantage of an emerging class of adaptive HSI sensors. Should such

an instrument be applied to the prior FAT study, there is reason to believe that the

performance gain may increase. In fact, given the agility of the adaptive HSI instru-

ment, one could certainly imagine that the combination of the HSI FAT and HSI CAT

approaches in a single system would demonstrate performance gains greater than the

sum of their parts.

2.5 Data Synthesis

As the proposed adaptive HSI instrument has yet to be realized – and is pred-

icated by the implementation of a real-time feedback controller – it is convenient to

use synthetic HSI data to develop and evaluate the system. The DIRSIG model is a

first-principals-of-physics based tool useful for synthesizing remote HSI data. DIRSIG

accounts for object geometry, spectra, and motion; it uses MODTRAN [46] to apply

solar radiance and atmospheric transmission effects. Objects within a DIRSIG scene

are “painted” according to underlying spectral-reflectance signatures. Frequently,

these are the precisely-measured spectra of real-world objects such as grass, asphalt,

concrete, and car paint. The DIRSIG implementation used in this research is detailed

in Section 4.2.
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III. Theory

This chapter will provide the theory behind the effort, including foundational material

necessary for this study, as well as novel techniques proposed herein. First, a brief

overview of the optimal estimation theory as applied to tracking is given in Section 3.1.

In Section 3.2, the concept of data association will be discussed in detail to

motivate the multiple hypothesis tracking system. Here, key statistics of the back-

ground environment are applied to the track costing and maintenance problem. When

adapted for CAT, this represents a key contribution of this effort.

Following from the treatment of scene classification in Section 2.4.1, a deeper

discussion of nonparametric hyperspectral classification will be given in Section 3.3.

Here, the theory of the GRLVQI classifier will be studied in detail.

Finally, Section 3.4 will discuss context-aided tracking in detail. This section

represents the most fundamental contribution of this thesis to tracking theory. The

concept of background modeling will be introduced, which is concerned with forming

a functional map of all background elements in the sensed environment. The novel

extension of this into adaptive background modeling will be given next. Adaptive

background modeling applies the emerging class of adaptive HSI sensors to the CAT

problem. The concept of the adaptive sensor resource manager is a necessary extension

to such a sensor. The background model is applied to the tracking system through

the development of new track costing and maintenance methods, which are a new

contribution to the field.

3.1 Tracking Background

A multitude of tracking methods have been developed and extensive literature

exists on this subject. The focus here is on two of the typical functions: filtering and

track-to-measurement scoring that are prevelant in many of the tracking architectures.

Optimal Bayesian filtering is deemed appropriate for the ground target tracking prob-

lem, which is widely accepted in the literature [10, 13]. Furthermore, given the use

of a nearly constant velocity dynamics model for ground targets coupled with an im-
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age based measurement space, a linear filter model can be implemented. The use

of a linear filter model simplifies implementation, and is presented here to provide

the foundation for the track-to-measurement scoring that plays a major role in the

context-aided tracking development. The goal is to estimate the time varying track

state xk using all measurements zk collected up to the current time index k. The

linear Kalman filter assumes the system model can be defined as

xk = Fkxk−1 + w(k), (3.1)

zk = Hkxk + v(k), (3.2)

where Fk and Hk are the linear dyanamics and measurement matrices, respectively.

The dynamics and measurement noises are represented as w(k) and v(k), respectively.

We will denote a Gaussian distribution with mean µ and covariance matrix Σ

as N (µ,Σ). Similarly, evaluation of the same Gaussian density function at xk will

be denoted as N (xk;µ,Σ). We assume w(k) ∼ N (0, Qk), v(k) ∼ N (0, Rk), and

x0 ∼ N (µ0,Σ0), where the statistics Qk, Rk, µ0, and Σ0 are known.

The Kalman filter equations are then given by

x̂k|k−1 = Fkx̂k−1|k−1, (3.3)

Σ̂k|k−1 = FkΣ̂k−1|k−1F
′
k +Qk, (3.4)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1), (3.5)

Σ̂k|k = Σ̂k|k−1 −KkHkΣ̂k|k−1, (3.6)

where

Kk = Σ̂k|k−1H
′
kS
−1
k , (3.7)

Sk = HkΣ̂k|k−1H
′
k +Rk, (3.8)

Kk is the Kalman gain, Sk is the covariance of the innovation term, yk = zk−Hkx̂k|k−1.
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Next, the track-to-measurement association score is well defined for Bayesian

filtering in terms of likelihood ratios, with the negative-log-likelihood ratio used for

anlaytical convenience. The general form of this ratio is given by

− ln

[
p(D|H1)

p(D|H0)

]
(3.9)

where p(D|Hi) is the pdf evaluated with the data D under the assumption that Hi

is correct. This form will be utilized next in the discussion on multiple hypothesis

tracking.

3.2 Multiple Hypothesis Tracking

The complexity of the data association function grows aggressively with track

density, which is pertinent to the urban tracking challenge. As this association is

fundamental to the topic of CAT, an association technique much in the spirit of [13]

will be presented here. As mentioned in Section 2.2, the MHT construct is a deferred-

decision logic applied to the data association function. The MHT is designed to

manage uncertainty by making many mutually exclusive “soft” decisions whenever

measurement-to-track conflict arises. However, the MHT depends upon the efficacy

of the scoring technique. The score of the myriad hypotheses in the MHT at any

time follows directly from the costs of the association events within those hypotheses.

Therefore, the notion of track costs is both foundational to the MHT system, and a

prime opportunity to apply CAT techniques.

Several key background statistics must be introduced and are classically held

as constant parameters within the tracker – indeed they can be used to “tune” the

system during its development. These are represented in Figure 1.1 as the Uniform

Background Statistics element of the system architecture. Their counterpart within

the CAT system will be described in Section 3.4.4. The probability of detecting an

object (making a measurement) conditioned on its presence is PD. There exists some

sufficiently small spatial area A which, when observed by the remote sensing system,

31



www.manaraa.com

may be measured independently from other such regions for the presence of a moving

object. Then an expected density of objects per A is βNT for “new track”, and βFA

for “false alarm”.

The track cost, which is inversely proportional to the track score, is defined as a

recursively summed negative-log-likelihood ratio C(k). The cost is initialized for new

tracks and evolves as the track is updated or misses measurements:

C(1) = − ln

[
βNT

βFA

]
initialization (3.10)

C(k) = C(k − 1) + ∆C(k) (3.11)

∆C(k) =

− ln [1− PD] miss

− ln
[
PDp(z

j
k|x

i
k)

βFA

]
update

(3.12)

Consider the following illustrative example of a recursive track cost for a track that

is initiated, then updated, and then deemed to have a missed detection.

C(3) = − ln

[
βNT

βFA

]
− ln

[
PDp(z

j
k|xik)

βFA

]
− ln [1− PD] (3.13)

The pdf p(zjk|xik) is representative of the statistical distance between the jth

measurement zjk and the predicted track location xik|k−1 of the track Ti at time k.

For the case of the Kalman filter defined above, this expression can be analytically

described as

p(zjk|xik) =
e(−d

2/2)

(2π)M/2

√
|Σ̂k|

(3.14)

where M is the dimension of the measurment space and d is the Mahalanobis distance

given by d = y′kΣ̂
−1
k yk.

The track cost is a useful method of evaluating promising new tracks to confirm,

as well as tracks to drop. Track confirmation helps to insulate the user from false

tracks. These originate from false detections and tend to be short-lived, cluttering the
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presented track picture. This can be particularly troublesome where false tracks occur

near valid tracks; these are called redundant tracks and can convey undue ambiguity

to the user. Here, a proposed track confirmation threshold Tconf is based upon the

cost of a hypothetical track which initializes and then receives Nconf updates. Since

the update cost from Equation (3.12) depends upon the probability p(zjk|xik) – which

is not known for the hypothetical track in question – a related probability pSSconf(z|x)

is formed from some steady-state benchmark instead. Hence,

Tconf = − ln

[
βNT

βFA

]
− Nconf ln

[
PDp

SS
conf(z|x)

βFA

]
. (3.15)

All candidate (unconfirmed) tracks are compared to this threshold and are confirmed

if and when

C(k) ≤ Tconf . (3.16)

Of course, C(k) contains all history for that track, which is equivalent to allowing

tracks unlimited time to become confirmed.

Likewise, a threshold for dropping badly behaving tracks is necessary. Much

as in Equation (3.15), a hypothetical track is conceived which has missed Mdrop up-

dates out of Ndrop observations. This implies Ndrop −Mdrop updates, which likewise

necessitates a probability pSSdrop(z|x) from a steady-state benchmark. Hence,

Tdrop =− (Mdrop) ln [1− PD]

− (Ndrop −Mdrop) ln

[
PDp

SS
drop(z|x)

βFA

]
. (3.17)

For the new tracks under test in Equation (3.16), C(k) is an appropriate cost; but

for mature tracks it may contain a great deal of history and can grow without bound.

Since track deletion is intended to represent events which are sudden in nature – e.g.,

the vehicle has entered a parking garage – a form of track cost with less memory is

desireable. Borrowing Ndrop from Equation (3.17) to define this window of time, the
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test for dropped tracks becomes

C̄(k) ≥ Tdrop , where C̄(k) =
k∑

τ=k−Ndrop+1

∆C(τ). (3.18)

Notably, while pSSdrop(z|x) = pSSconf(z|x) is a reasonable design decision, each may

alternatively be tuned to a desired rate of track confirmation and deletion. Other

tuning parameters, Nconf , Mdrop, and Ndrop are set according to the user’s balanced

tolerance for true track confirmation latency, rate of false track confirmation, preva-

lence of true track premature deletion, and rate of false track deletion.

3.3 Hyperspectral Classification

Based on the prior discussion of parametric versus non-parametric classification

methods coupled with the relatively small sample sizes available in the data for the

problem of interest, a non-parametric method will be employed.

Classification is the application of supervised machine-learning techniques to

optimally assign identity labels to observed objects. While its applications are broad,

here classification will be focused on the HSI domain. Furthermore, while the classifi-

cation of HSI moving-vehicle signatures is of great utility within feature-aided-tracking

(FAT) research [12], this paper will focus on scene background classification for CAT.

A general HSI classification architecture begins with data pre-processing and

has a training stage followed by a utilization stage. Preprocessing is concerned with

transforming the spectral dimension of the data from N bands (in a native radiance

space), to an NF dimensional feature space. Although not mandatory, this commonly

includes radiance-to-reflectance conversion and/or dimensionality reduction, such that

NF � N . This reduction arises from the knowledge that, for materials of interest,

portions of the N bands are highly correlated. Also, some bands may have very poor

signal-to-noise characteristics, e.g., water absorption in the atmosphere, and should

simply be dismissed. The GRLVQI is a gradient-descent neural-learning method. As
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it trains, it uses differential-shifting to manipulate an abitrary number of prototype

vectors within the feature space. This training can become quite computationally

expensive, although adaptations in [11] have led to significant improvements in effi-

ciency in the form of the adaptive generalized relevance learning vector quantization

improved (AGRLVQI) classifier. Finally, the utilization stage of classification tests

unknown signatures against the model and declares the identity of each – or defers

in case of low confidence. In parametric classifiers, this test chooses the class that

minimizes some statistical distance. In the case of the AGRLVQI non-parametric

classifier, this test chooses the class with the closest individual prototype vector.

Here, the AGRLVQI classifier is applied to the urban HSI CAT challenge; the

selection is due mainly to its robustness within an autonomous system. All such

GLVQI-based paradigms define a cost function D, which is a function of the decision

boundary, and is defined as:

D =
M∑
m=1

f(µ(xm)), (3.19)

where f (·) is a sigmoid function that takes into account the loss due to each sample,

M is the number of training samples and µ(·) is the missclassification measure defined

as

µ(xm) =
dIC − dOC
dIC + dOC

(3.20)

where dIC and dOC are the relevance weighted and squared Euclidean distances be-

tween the input sample xm and in-class winning prototype vector (wIC) and out-of-

class winning prototype vector (wOC) respectively.

The loss function in Equation (3.21) is defined as a function of the classification

performance as determined by the nearest in-class and nearest out-of-class winner per

Equation (3.22):

f ′(µ(xm)) = f(µ(xm)) [1− f(µ(xm))] , (3.21)
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f(µ(xm)) =
1

1 + e−µ(xm)
.

As such, one may consider AGRLVQI a minimum classification error classifier. The

relevance-weighted Euclidean distance is defined as

dλ =
n∑
i=1

λi (xi − wi)2, (3.22)

where λ is a vector λ = (λ1, λ2, . . . , λn) that weights each of the n input dimensions

i based on their importance for classification. Note that the appropriate superscripts

IC and OC are left off for convenience.

The out-of-class winning prototype vector is the prototype vector with a class

label other than the input sample, that is closest to the input sample using the

relevance-weighted Euclidean in Equation (3.22). Updates to prototype vectors are

written generally as w (t+ 1) = w (t) + ∆w (t). The values of ∆w (t) are defined

in [26] as

∆wIC =
4ε(t)ICf ′|µ(xm)d

OC
λ

(dICλ + dOCλ )2
Λ(xm −wIC) (3.23)

∆wOC = −4ε(t)OCf ′|µ(xm)d
IC
λ

(dICλ + dOCλ )2
Λ(xm −wOC), (3.24)

where ε (t) is the learn rate of the training process and Λ is a diagonal matrix with

elements consisting of λi.

Updates to the relevance vector as presented in [26] is defined as

∆λi = −2ε(t)λf ′|µ(xmi )d
OC
λ (xmi −wIC

i )2

(dICλ + dOCλ )2
+

2ε(t)λf ′|µ(xmi )d
IC
λ (xmi −wOC

i )2

(dICλ + dOCλ )2
(3.25)

It is important to note that the updates provide in Equations (3.24) and (3.23) and in

Equation (3.25) occur with the current values of the weights and prototype vectors.
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That is, the values at time t are used, not the values at time (t+ 1). For classification,

one simply assigns a label to the input sample xm that is the class label of the closest

prototype vector in a Euclidean sense.

3.4 Context Aided Tracking

The premise of CAT is that applied knowledge of a vehicle’s environment may

improve the performance of the tracker. This knowledge may be available as pre-

pared data in a geographic information system (GIS) or inferred real-time from the

surveillance data itself. The later is attractive when GIS data are outdated, denied,

or difficult to co-register with the surveillance imagery.

This section will first describe an offline method of inferring context which

assumes availability of full-scene HSI data and modest operator intervention. Then

the novel, online, adaptive method will be introduced and applied to adaptive HSI

sensing. Finally, the background statistics will be directly incorporated into the MHT

to provide an innovative method for context-aiding.

3.4.1 Background Modeling. The precursor to CAT is the background

model, a spatial map of the scene materials which are functionally relevant to the

tracking algorithm. In the system architecture of Figure 1.1, this process corresponds

to the Semi Automated Background Modeling block. Here, a technique similar to [28]

is used to convert HSI data into such a model. A specific synthetic scene generated by

DIRSIG is used for the discussion that follows. As such, specific numbers are stated

such as the number of hyperspectral bands, number of class models, etc. to illustrate

the concepts. A HSI cube of the scene is obtained and rectified such that the mission

imagery can later be registered to the resulting model. Radiance (L) to reflectance

(ρ) conversion is not essential here, as no reference spectra will be incorporated into

this method and atmospheric effects are assumed constant across the scene. However,

several bands with moderate to severe atmospheric H2O absorption are discarded,

e.g., 0.93µ. Figure 3.1 illustrates common atmospheric absorption bands in the solar
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Figure 3.1: The measured solar irradiance at the earth’s surface. Notably, this
differs from the expected blackbody radiation curve due to atmospheric absorption in
certain portions of the spectrum. Source: ASTM G173-03 [2].

irradiance measured at the earth’s surface. First, the well known normalized difference

vegetation index (NDVI) [56] is used to detect pixels dominated by vegetation:

L0.86µ − L0.66µ

L0.86µ + L0.66µ

≥ 0.18 , (3.26)

where the wavelengths and threshold are manually tuned for a given scene, but are

in the range of commonly accepted values.
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Next, an empirically derived tree index is used to determine which pixels among

those passing the NDVI test are dominated by tree leaves:

L0.86µ − L0.78µ

L0.86µ + L0.78µ

≥ 0 , (3.27)

and assuming the remaining pixels to be grass. This index is also tuned for a given

scene, and may not hold for scenes with different tree and grass species. With explicit

dimensionality reduction (for example, from N = 60 to NF = 2), these index methods

exploit convenient material properties in an effective and computationally inexpensive

way.

Subsequent spectral processing focuses on the much more challenging task of

classifying remaining scene elements: roads, water, and building materials. An op-

erator manually identifies subclasses of materials and marks small training regions

within the cube for those materials. A functional class, e.g., road, may have many

subclasses such as concrete, asphalt, and weathered asphalt; this is necessary to keep

the spectral-feature-space variances low. In this experiment, there are 15 subclasses.

Ten of these subclasses account for various asphalt-shingle and gravel roof treat-

ments; four subclasses account for road surfaces. The AGRLVQI classifier algorithm

is trained on this population of spectral samples with corresponding subclass labels.

Next, the resulting classifier model is used to assign labels to all non-vegetation pixels

in the cube. The subclass labels are then discarded and replaced with their functional

parent class labels. Finally, the fusion of the results from the vegetation indeces and

AGRLVQI classifier becomes the initial spectral background model for the scene.

Thus far, spectral domain information has been exploited for each pixel indepen-

dently. This is apparent in the presence of anomalous “speckles” in the background

model. These small features are frequently the result of classification errors, perhaps

due to scene materials which were excluded from the training data. At best, these

are of no use for the functional model. Clearly, there is further salient information in

the two spatial dimensions of the cube, e.g., texture and edge contrast. Recognizing
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this, a spatial segmentation technique is applied to each band. Similar to a raster-

scan flood-fill operation, this replaces each pixel’s radiance with that of its same-band

spatial-neighbor if their radiances are within some small threshold. After this re-

placement, many neighboring pixels will have identical values for some majority of

bands in this “stack of bands” – these are called segments. Every pixel now belongs

to a single segment (or is a singleton segment itself). Those segments with fewer

than some number of members is then discarded by assigning it to a larger neighbor

segment. Finally, this spatial segmentation is fused with the initial spectral back-

ground model: for each segment, all member pixels vote for a material label based on

the corresponding cell in the spectral background model. This then forms the final

background model.

3.4.2 Adaptive Background Modeling. The background modeling approach

discussed above is effective, but comes with a high cost: the requirement for pre-

tracking-time HSI acquisition, and an offline human-in-the-loop processing stage. A

new approach is considered here, and represents the Adaptive Background Modeling

block in the system architecture of Figure 1.1.

The emergence of adaptive HSI sensors – such as a RITMOS-inspired DMA-

based instrument – has provided a potential path for improvement over the prior

method. This instrument collects a full-frame panchromatic image at each step in

time. A minority of pixels can be excluded from the panchromatic image on command,

via flipping micro-mirrors in the DMA, and reflected into a spectrometer. One concept

of employment for such a sensor is to begin the surveillance mission by investing the

time to scan a dense HSI cube solely for the sake of background modeling. While

this is practical and provides a just-in-time model, it is arguably not optimal: more

HSI pixels are being collected than necessary. Also, in some cases a rapidly moving

field-of-view is desirable or unavoidable, leaving no time for a dense cube. What is

needed is an adaptive at-any-time model which initializes with as few HSI pixels as

possible, yields the best model possible at any time, and converges on the model
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afforded by a dense acquisition. Here, a notional DMA-based MOS HSI sensor is

applied to the remote ground-vehicle CAT problem and forms the basis for adaptive

background modeling.

The typical background modeling process in Section 3.4.1 is modified into a

form of Bayesian inference [13] as follows. Introduce an a priori library of labeled

spectral signatures representing Nφ functional background material classes φ. As in

Section 3.4.1, allow the underlying library representation to contain subclasses as

necessary. Use the library to perform an offline training process to prepare the NDVI

and tree index wavelengths/thresholds, and to train the AGRLVQI classifier model,

such that HSI pixels can be labeled.

The online portion begins with a full-frame panchromatic radiance image di-

vided into regions of similar intensity via the spatial segmentation process previously

described. Clearly, since this operates on a single (panchromatic) band, the abil-

ity to distinguish regions with homogenous materials will be diminished versus the

“stack of bands” approach. However, this segmentation provides an initial guess at

the background model, with the caveat that each segment lacks a material label.

The remainder of this discussion applies to each segment in parallel, but for

brevity, no segment index has been added to the notation. Assume a sequence Z

of labeled, single-pixel hyperspectral observations z intersecting some segment. Note

that the library and observations are unlikely to lie in a consistent radiance space.

Radiance-to-reflectance transformation is suggested but beyond the scope of this pa-

per; see [51] for a survey of techniques. One, many, or none of these observations

may arrive at each time k. In order to strengthen a claim of independence, we re-

quire the observations to be sufficiently separated spatially or temporally within the

segment. Define the probability that the segment has the functional material label φi

upon incorporation of the 1st through n-th observations as p(φi|Zn). At some loss of
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optimality, an assumption of uniformly distributed priors is made:

∀i : p(φi|Z0) =
1

Nφ

. (3.28)

Now define the transitional probability of receiving a specific sequence of observations

Zn conditioned upon a true class identity φi as p(Zn|φi), and due to independence of

the observations

p(Zn|φi) =
n∏
j=1

p(zj|φi). (3.29)

Note that an estimate of p(z|φ) is empirically available as a consequence of the a priori

library via a confusion matrix analysis. Now process the segment’s observations in

order, recursively updating p(φi|Zn) according to

p(φi|Zn) =
p(zn|φi)p(φi|Zn−1)∑
j p(zn|φj)p(φj|Zn−1)

. (3.30)

For the downstream CAT functionality, it is necessary to assign a single functional

material label to each segment. This time-varying label is simply the maximum a

posteriori label

φMAP(k) = arg max
i∈[1,Nφ]

p(φi|Zn(k)) , (3.31)

and when determined for each segment, becomes the adaptive background model.

3.4.3 Sensor Resource Manager. In the background-modeling architecture

of Figure 1.2, the Sensor Resource Manager is the system component which commands

the adaptive HSI sensor in a feedback fashion. As mentioned in Section 2.1, MOS

spectrometer instruments restrict the quantity and placement of the HSI pixels which

can be acquired at any moment. As a simple example, if two micro-mirrors from

the same column and nearby rows were steered towards the spectrometer at the

same time, their dispersed radiance would likely overlap, destroying both signatures.

Hence, a sensor resource manager (SRM) is now conceived. Let u(k + 1|k) be the

utility of adding a new observation zn(k)+1 at a future time k + 1 for some segment.
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The SRM must then allocate spectral observations, within the constraint, in order to

maximize the summed utility. For the simplified constraint of at most one spectral

measurement per column on the DMD array, this allocation is simply that which

selects the maximum value of u(k) per column when all region’s u(k) values are

mapped in a row/column space defined by the DMD array.

Three versions of u(k) are given here, and their performance will be compared

in Section 4.2.3. First, define the time-varying entropy of a segment – a measure of

disagreement between the segment’s observations – as

h(k) = −
Nφ∑
i=1

p(φi|Zn(k)) ln
[
p(φi|Zn(k))

]
. (3.32)

The first and most intuitive form of u(k) is simply the entropy itself

uentropy(k + 1|k) , h(k). (3.33)

In this formulation, the SRM will clearly devote the most HSI acquisitions to regions

with the highest entropy. Since the observations Zn for a segment are subject to

measurement noise and classification error, there is hope that as n(k) increases, h(k)

will decrease. There is, however, cause for concern regarding regions which are difficult

to classify, i.e., high h(k) despite many measurements (high n(k)). The actual utility

of allocating additional measurements to such regions may be quite low – a version

of diminishing returns.

The second form of u(k) is designed to mitigate this effect by normalizing the

entropy according to the number of measurements

u norm
entropy

(k + 1|k) ,
h(k)

ln [n(k) + 1]
, (3.34)
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where the +1 term accounts for the diminishing utility of the potential new measure-

ment at time k+1, and taking the natural log of the denominator puts it on the same

logarithmic scale as the entropy in Equation (3.32).

A third form for u(k) is a type of null SRM, in which p(φi|Zn), φMAP(k), and

h(k) are computed as normal but not fed-back into u(k). Lacking that information,

the SRM defaults to uniform random behavior

urandom(k + 1|k) , U(0, 1), (3.35)

where the range [0, 1] is arbitrary but consistent. This random SRM is motivated by

research in the field of compressive sampling – which is closely related to the adaptive

sensing method here – in which random measurements are frequently the best method

one can employ [47]. Of course, such an SRM that relies on digital pseudorandom

number generation techniques has a very tangible computational benefit over those

employing entropy analysis.

Regardless of the chosen form for u(k), the utility for CAT could certainly be

combined with other utility functions within the system. In a FAT/CAT system there

would be a competing desire to measure the signatures of moving vehicles. A system

with stationary-target ATR might also have a utility function for scanning the scene

to discover new targets. The fusion of multiple utility functions in a similar system

was treated in [53].

3.4.4 Adaptive Background Statistics. Traditional uniform background

statistics of the environment (PD, βNT, and βFA) were presented in Section 3.2 and

are so abstract as to be difficult to estimate. As such, they often degenerate into

physically meaningless – albeit important – tuning variables. Part of this difficulty

arises from the application of these statistics as uniform values. The CAT paradigm,

however, holds the background statistics as spatially dependent. Recognizing that

PCAT
D , βCAT

NT , and βCAT
FA are difficult to know directly, context information is used to
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Table 3.1: Background Statistics

Material PD βNT βFA

Road 0.99 1×10−2 1×10−2

Grass 0.99 1×10−4 1×10−2

Shadowed road 0.6 5×10−2 1×10−2

Tree canopy 1×10−2 1×10−5 1×10−2

Rooftop 1×10−4 1×10−8 1×10−2

Water 1×10−4 1×10−8 1×10−2

Uniform Background Statistic 0.97 1×10−4 1×10−2

heuristically estimate them. Here, context is primarily a question of the functional

material composition of the scene – a background model – and is developed as in Sec-

tions 3.4.1 and 3.4.2. The first-order effect on PCAT
D is degree of occlusion. Assuming

an airborne sensor, materials which tend to obscure ground vehicles will result in

lower PCAT
D . Tree canopies have varying density, but in urban environments, dense

and multi-layer canopies are rare. In oblique viewing geometries of urban scenes,

vehicles may appear to be behind buildings and rooftops. Further assuming a passive

imaging sensor, solar illumination also has a strong effect on detectability, which varies

spatially due to shadowing. The statistic βCAT
NT is treated here as a hybrid measure of

detectability and hospitability (where ground vehicles can travel). While the statistic

βCAT
FA may indeed vary according to material, this would be due to subtleties within

the motion detection algorithm. Here, βCAT
FA is held constant. An empirical analysis

of real remote sensing data processed with a typical motion detection algorithm has

led to the values in Table 3.1.

These statistics are formed into a spatial map, and must be drawn according

to location. For βCAT
NT and βCAT

FA , the location is intuitively based upon where the

measurement zjk falls. For PCAT
D , there is some question as to whether this is based

upon the location of the measurement zjk, the predicted track state x̂ik|k−1, or the

posterior track state x̂ik|k. The predicted track state is always available and is a good

choice, whereas the measurement is meaningless in the “miss” case of Equation (3.12).
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Figure 3.2: An illustration of track cost. This simulated track travels through a
high PD region, a low PD region, and finally emerges into a high PD region. The
cost C based on uniform background statistics heavily penalizes the track for missed
measurements within the low PD region. The cost CCAT based on context-aided
statistics assigns a more reasonable cost to the track in the same low PD region.

The posterior track state is equivalent to the predicted state in the “miss” case, but

subtly different in the “update” case. The posterior represents the optimal estimate

of the track at that time, and in this work serves as the reference location for PCAT
D .

These statistics then lead to the context-aided track cost CCAT and windowed cost

C̄CAT. The significance of the difference between C (cost based on uniform background

statistics) and CCAT (cost based on context-aided statistics) is readily apparent for

tracks traveling through a diverse background. Illustrated in Figure 3.2, CCAT is able

to provide a more accurate assessment of track health under certain circumstances.

Also of concern are the context-aided thresholds TCAT
conf and TCAT

drop , which are

based on hypothetical tracks. In the case of confirmation, the hypothetical βCAT
NT and

βCAT
FA are located by the initializing measurement of the track under test. However,

Nconf updates are assumed to have occurred – since they are hypothetical, their po-

sitions are indeterminate, making the selection of PCAT
D questionable. Reasonable
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choices include PCAT
D from the location of the most recent posterior of the track un-

der test, the average PCAT
D of that track relative to its window Nconf , or uniformly

random draws of PCAT
D throughout that window. An empirical analysis suggests that

another more aggressive confirmation strategy reduces the confirmation time of real

tracks without a marked increase in false track confirmation: namely the minimum

PCAT
D of the track under test within its window Nconf . Likewise, TCAT

drop is based on a

hypothetical track with indeterminate locations. Again, the same potential strategies

exist for selection of PCAT
D in the deletion test. Empirical analysis suggests that the

minimum within the window yields a balanced but guardedly conservative track drop

threshold. Two notional tracking cases have been simulated to validate these thresh-

old choices and to further motivate the benefit of CAT versus uniform background

statistics. These cases are illustrated in Figure 3.3.

Case I. A true track, which transitions from a high PCAT
D region into a low

PCAT
D region and back again. This succinctly describes a primary benefit of CAT: a

reluctance to drop tracks known to exist where they are less detectable. An additional

benefit is to smoothly transition the drop behavior as the detectability begins to

improve. An example of poor transition behavior, which has been resolved by the

minimum-windowed method, is the disproportionate drop tendency given a single

missed measurement as PCAT
D rises. An illustration of this case is given in Figure 3(a).

The CAT method successfully maintains track throughout this scenario, while the

uniform method prematurely drops the track ten frames into the outage.

Case II. A false track, formed entirely of false alarms occurring within a high

PCAT
D region. Although erroneous, this type of event is possible under certain circum-

stances. Ideally, this track will drop as rapidly as possible. This represents a sort

of “control experiment,” and although CAT is not equipped to hasten the drop in

this case, it preferably should not prolong it. An illustration of this case is given in

Figure 3(b). Both the CAT and uniform methods drop the track ten frames after the

final false alarm measurement.

47



www.manaraa.com

10 20 30 40 50 60 70
−120

−100

−80 

−60 

−40 

−20 

0   

20  

    

⇐= C̄ ≥ Td rop

c
o
st

t ime

 

   20 30 40 50 60 70
0

0.5

1

P
D

C̄
Td rop

C̄CAT

TCAT
drop

Update
Miss

(a) Case I

10 15 20 25 30
−80

−60

−40

−20

0  

20 

   

⇐= C̄ ≥ Td rop

⇐= C̄CAT≥ TCAT
drop

c
o
st

t ime

 

   15 20 25 30
0

0.5

1

P
D

C̄
Tdrop

C̄CAT

TCAT
drop

Update
Miss

(b) Case II

Figure 3.3: An illustration of track drop-thresholds in simulated data. In (a),
the track is following on object which leaves a high PCAT

D region, travels through an
occluding low PCAT

D region, and finally re-emerges into a high PCAT
D region. Notably,

the uniform cost C̄drop exceeds the uniform drop threshold Tdrop at frame 40, resulting
in track loss. However, the CAT cost C̄CAT

drop decreases, and the CAT drop threshold
TCAT

drop increases during the occlusion. This behavior makes track loss much less likely,
and the track is maintained throughout the scenario. In (b), a false track has formed
on several correlated false alarm measurements in a high PCAT

D region. The CAT
and uniform methods have the same behavior in this scenario, dropping the track ten
frames after the final false measurement. This suggests that CAT should not penalize
performance in similar cases.
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IV. Experimental Design and Results

Here, two experiments are described in which the effects of the proposed CAT sys-

tem are evaluated. First a parametric experiment is given. While it makes many

simplifying assumptions about the underlying environment, it supports rapid testing

of a broad parameter and operating-condition space. Second, a high-fidelity, remote-

sensing vignette is synthesized and exploited. It processes rendered imagery with a

full multiple-target, multiple-hypothesis context-aided-tracking testbed.

4.1 Parametric Experiment

In order to isolate the effects of background statistics on track maintenance per-

formance, a simple parametric experiment has been designed. A sequence of notional

observation frames is conceived and processed by a score-based track-maintenance al-

gorithm as in Section 3.2. Here, target arrivals and departures, background elements

causing measurement occlusion, and measurement performance are drawn randomly

from appropriate underlying distributions. Besides scoring, all other tracker elements

– e.g., data association, filtering, and the effects of hypothesis formation – are also re-

placed with parametric simulators. Notably, the concept of time has been abstracted

into frame counts, and frame-rate is neither given nor needed. Also, dimensionless

units are used for certain densities. Scaling coefficients have been empirically de-

termined and applied as needed. These simplifying assumptions cause no loss of

generality in the results. A suite of Matlabr functions has been created for this pur-

pose, and is given in Appendix A. Each run of the simulator produces a sequence

of observation frames, and contains exactly one target (except for the null case in

which a target never arrives). The target arrival and departure within the sequence

is randomly defined, as is the occurrence and duration of occlusions. The extrinsic

parameters which define the simulation are given in Table 4.1. These parameters

are related to the truth of the simulation. The intrinsic parameters which define the

exploitation of the simulation are given in Table 4.2. These are tuning parameters.

For convenience, the parameter names match those in the Matlabr source code of
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Table 4.1: Extrinsic simulation parameters for the parametric experiment. Param-
eter names match those in Appendix A. Example values represent baselines within
the experiment.

Element Distribution Parameter(s) = e.g.

Number of frames scalar constant time = 200

Occlusion arrival
geometric, based on
per-frame probability
of arrival

pOcclusion = 0.01

Occlusion duration uniform
minOcclusionDur = 1

maxOcclusionDur = 20

Target arrival
geometric, based on
per-frame probability
of arrival

pTgtArrival = 0.1

Target departure
geometric, based on
per-frame probability
of departure

pTgtDeparture = 0.005

Kinematic steady
state negative log cost

normal
kssMean = -5

kssVar = 4

Unoccluded measure-
ment

Bernoulli nominalClearPdTrue = 0.95

Occluded measure-
ment

Bernoulli nominalOccludedPdTrue = 0.05

False measurement Bernoulli pFalseAlarm = 0.05

Appendix A. With this parametric framework, a broad set of operating conditions

can be feasibly tested in a Monte Carlo fashion.

A single instantiation of the parametric test requires approximately one second

of computation time on a modern personal computer. An illustration of a single

instantiation of the parametric experiment is given in Figure 4.1, and will be described

here to provide additional insight into the experiment. In this test, a target arrives

shortly after the start of the test and remains for approximately 100 frames of time.

The simulation generated two occlusions, during which nearly all measurements were

lost. This particular instance of the test was setup for uniform background statistics
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Table 4.2: Intrinsic tuning parameters for parametric experiment. Parameter names
match those in Appendix A. Example values represent baselines within the experi-
ment.

Element Parameter(s) = e.g.

Number of updates in prototypical confir-
mation track

Nconf = 5

Window length of prototypical dropping
track

Ndrop = 10

Number of misses in prototypical dropping
track

Mdrop = 5

Coefficient of confirmation (lower confirms
sooner)†

confirmFactor = 5

Coefficient of drop (lower drops sooner)† dropFactor = 5

Assumed ratio of false-alarm density over
probability of detection

BetaFA multiplier = 1×10−2

Mode selection (uniform vs. non-CAT) CAT = true | false

Assumed uniform probability of detection unif Pd = 0.97

Assumed uniform new-track density unif BetaNT = 1×10−2

Assumed CAT probability of detection
when unoccluded

CAT Pd clear = 0.95

Assumed CAT probability of detection
when occluded

CAT Pd occluded = 0.05

Assumed CAT new-track density when un-
occluded

CAT BetaNT clear = 1×10−2

Assumed CAT new-track density when oc-
cluded

CAT BetaNT occluded = 1×10−5

† These coefficients are intermediate tuning parameters used solely to derive pSSconf|drop(z|x).
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rather than CAT. A track was initialized and confirmed, and successfully coasted

through the first occlusion, which was relatively short. During the second occlusion,

however, the track was dropped. A new track was initialized and confirmed shortly

after the second occlusion completed and measurements resumed. After the true

target departed, the system was somewhat delinquent in deleting the track. This is

due to a series of false alarms which caused the track to persist before finally being

deleted.

The goal of the parametric experiment is to collect a statistically significant

population of results while varying certain aspects of the extrinsic or intrinsic param-

eters. Any across-the-board or conditional performance changes due to CAT should

emerge. Since the combinatorics of the parameters make comprehensive testing im-

practical, a series of tests is defined in which one or two parameters are adjusted at

a time.

4.1.1 Metrics for the Parametric Experiment. The following is a set of

well-known tracking multi-target metrics which have been identified as most likely to

demonstrate the effects of CAT. As this parametric experiment lacks some complexity

of a full tracking system, a compact set of metrics will be formed and the prime-

notation (′) will be used. These metrics will be further developed for the tracking

testbed experiment – and new metrics introduced – in Section 4.2.6. Recall that each

instance of the parametric test generates at most one target, and the test may result

in zero, one, or many tracks, i.e., confirmations followed by deletions. Define the true

target presence function as

δ′(k) =

1 target present

0 target absent

(4.1)

for each time k in that instance’s full set of times K. Referring to each confirma-

tion/deletion as a distinct track identity, define the function I ′(k) which assigns a

positive, natural, track identity (I ′(k) ∈ N1) or in the no track case (I ′(k) = 0) at
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each time k. For convenience, require that I ′(k′) = 1 when the system confirms the

first track at some time k′ > 0, and the track identity is incremented by 1 for any

subsequent track confirmation. Track completeness is defined as

M̄′
comp =

|k : I ′(k) 6= 0
⋂
k : δ′(k) = 1|

|k : δ′(k) = 1| , (4.2)

where |·| is the set counting operator. Thus, completeness refers to the ratio of

the time that the target is present and covered by a confirmed track, to the time

in which it is present. Completeness can naturally be extended to a collection of

many instances – as in a Monte Carlo experiment. It lies on the range [0, 1], where

1 indicates ideal coverage. Specific track identity is of no consequence to M̄′
comp.

Should track deletion occur followed immediately by confirmation of a new track, i.e.,

an identity-swap, M̄′
comp is not penalized.

Conversely, track purity is not concerned with coverage, but with track identity

over the entire scenario K:

M̄′
pure =

|k : I ′(k) = mode I ′(K)|
|k : I ′(k) 6= 0| , (4.3)

which is the ratio of the times in which the target is assigned its most frequently

occurring identity to the frames in which it is assigned any track identity. Again,

purity is extensible to Monte Carlo analysis. It lies on the range (0, 1], where 1

indicates that when identity assignment occurs, it remains entirely consistent. As

M̄′
pure → 0, identity swapping occurs more frequently.

A final metric is introduced which is concerned with the system’s ability to

estimate the presence or absence of targets. In this parametric experiment, at any

time k the system will either have, or not have a confirmed and not-yet-deleted track,

i.e., an active track. Thus, the cardinality of the system’s tracks is 1 or 0. Also at

any time k, a target will either be present or absent; the cardinality of the truth is 1
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or 0. The difference in cardinality is the delta-cardinality, and is

∆′card(k) =



0 target present, active track

1 target absent, active track

1 target present, no active track

0 target absent, no active track

(4.4)

at each time k. The mean delta-cardinality of an instance – or a Monte Carlo set of

many instances – is

∆̄′card =

∑
k∈K ∆′card(k)

|K| . (4.5)

The delta-cardinality is ideally 0. In this parametric experiment, the upper-bound is

1, e.g., the system always has an active track when the target is absent, and never

has an active track when the target is present. Note that delta-cardinality is related

to completeness, except that delta-cardinality penalizes the system when the target

is absent and an active track remains.

4.1.2 The Time-Domain Nature of Occlusions. Subjective analysis of prior

tracking systems within challenging environments suggests that occlusions are a lead-

ing contributor to tracking failures. A first-order characterization of occlusions in

tracking scenarios is given by occlusion arrival rate and occlusion duration. Here,

the occlusion arrival rate is drawn from a geometric distribution defined by a certain

per-frame probability of a new occlusion; occlusion duration is drawn from a uniform

distribution between a minimum and maximum duration. A test matrix has been

formed in which these two aspects of occlusions are swept through typical ranges.

The occlusion arrival element is represented by the pOcclusion parameter. This is

treated as the per-frame probability of a new occlusion beginning, conditioned on

the simulation being in an occlusion-free state during the previous frame. Occlusions

arrive according to a Bernoulli trial with the pOcclusion probability, such that the

inter-occlusion times take on the geometric distribution. This behavior was selected
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to mimic real-world occlusions, which are generally independent and discrete events

caused by background structure. Notably, any number of occlusions are permitted

in a simulation run. As the occlusion duration is drawn from a uniform distribution,

there are two underlying parameters – the minimum and maximum bounds. Gener-

ally these are set relatively far apart to allow for both brief and extended occlusions.

In this experiment, they are combined into a single quantized parameter where the

minimum is only slightly smaller than the maximum. This was done in order to

increase the granularity of the results.

The resulting test serves as a projection of the overall operating-condition space

onto a relatively simple two-dimensional parameter field. This field can be related to

real-world tracking scenarios, as illustrated in Figure 4.2. Consider the case where

pOcclusion= 0.01 and minOcclusionDur,maxOcclusionDur= 5, 10. Further assum-

ing a real-world sensor with a 10Hz frame-rate, this yields an expected inter-occlusion

time of 10 seconds and occlusions between 0.5s and 1.5s in duration. This is notionally

equivalent to a benign, rural tracking scenario in which a target at 20m
s

travels a route

with occluding background elements, e.g., trees, spaced 200m apart and spanning

10m to 30m in width. A more challenging case exists when pOcclusion= 0.1 and

minOcclusionDur,maxOcclusionDur= 20, 25. This corresponds to an urban-canyon

tracking scenario in which a 10m
s

target is generally visible for only 10m and occluded

for 20-25m. Also notionally illustrated in Figure 4.2, there is reason to expect a

nonlinear relationship between occlusion duration/frequency and tracking difficulty.

If the percentage of time in which a target is occluded can be used as to estimate

tracking difficulty, then clearly the effects of occlusion duration and frequency are

multiplicative, rather than cumulative in nature.

4.1.3 Results. A Monte Carlo analysis has been performed with 200 runs

in each cell of the two-dimensional parameter space. The resulting metrics for this

test appear in Figure 4.3 for the uniform case. The test has been repeated with CAT

enabled, resulting in the metrics of Figure 4.4.
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Rare, Short
Occlusions

Frequent, Short
Occlusions

Frequent, Long
Occlusions

Rare, Long
Occlusions

Easy

Hard

Figure 4.2: Notional meaning of the time-domain nature of occlusions. The
operation-condition space has many dimensions; here it has been collapsed into two
dimensions that describe the first-order effect of occlusion. The x-axis represents the
arrival rate of occlusions. The y-axis represents the duration of occlusions. The col-
orbar indicates a subjective assignment of difficulty. The shape of the difficulty field
is intended to emphasize the nonlinear nature of the OC space. Simple examples are
given for the four corners of the space. For reference, the dashed box represents the
portion of the space in which the majority of the synthetic tracking data – described
in Section 4.2 – lies.
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(a) Purity

(b) Completeness

(c) Delta cardinality

Figure 4.3: Parametric experiment results for the time-domain nature of occlusions.
In this test, uniform background statistics are utilized. The three metrics of (a)
purity, (b) completeness, and (c) delta cardinality are plotted within two extrinsic
dimensions of the OC space: occlusion arrival (pOcclusion), and occlusion duration
(minOcclusionDur,maxOcclusionDur).
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(a) Purity

(b) Completeness

(c) Delta cardinality

Figure 4.4: Parametric experiment results for the time-domain nature of occlu-
sions. In this test, CAT statistics are utilized. The three metrics of (a) purity,
(b) completeness, and (c) delta cardinality are plotted within two extrinsic di-
mensions of the OC space: occlusion arrival (pOcclusion), and occlusion duration
(minOcclusionDur,maxOcclusionDur).
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A subjective analysis of the uniform results in Figure 4.3 agrees with com-

mon sense: the low pOcclusion, low minOcclusionDur,maxOcclusionDur quadrant

of the field is the least challenging and yields the best performance – i.e., high

purity and completeness with low delta-cardinality. The high pOcclusion, high

minOcclusionDur,maxOcclusionDur quadrant of the field is the most challenging

and yields the lowest performance – i.e., low purity and completeness with high

delta-cardinality. Furthermore, a curved shape exists within the field for all three

metrics. This indicates a nonlinear, worse-than-sum effect between these dimensions.

In marked contrast, the same three metrics for the CAT test in Figure 4.4 show a

significant increase in purity and completeness, and decrease in delta cardinality. This

represents the performance gain of CAT relative to the baseline uniform background

statistics. Several salient observations regarding the results follow:

• At the far left side of the field where occlusions never occur (pOcclusion→ 0),

CAT is of no use. However, there is no statistically significant evidence of CAT

causing harm in this case.

• At the center of the field (pOcclusion= 0.1 and minOcclusionDur,

maxOcclusionDur = 18,23), CAT improves purity by 50% (0.6 → 0.9), com-

pleteness by 400% (0.2→ 0.8), and delta cardinality by 50% (0.6→ 0.3). This

is a very significant performance improvement in all metrics. This point in the

field represents a very challenging tracking scenario. In the tracking experiment

in Section 4.2, extreme portions of the vignette with clustered tree canopies will

approach this level of occlusion challenge.

• An aggregated region of the middle of the lefthand side of the field – akin to the

dotted box in Figure 4.2 – represents the range of the occlusion difficulty which

will be tested in the tracking experiment in Section 4.2. Notably, this spans the

region from where the parametric test shows little performance gain with CAT

to the region where CAT creates a significant improvement.
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With the usefulness of CAT now demonstrated across a relevant OC space, an

experiment is designed to test the sensitivity of CAT to intrinsic tuning parameters.

The key intrinsic parameter in CAT is PCAT
D , the modeled probability of detection. In

the parametric experiment, PCAT
D always takes one of two values. When no occlusion

is occurring it is (CAT Pd clear), which is a model of the simulation’s true probabil-

ity of detection outside of occlusion (nominalClearPdTrue). When an occlusion is

underway it is (CAT Pd occluded), which is a model of the simulation’s true proba-

bility of detection during occlusion (nominalOccludedPdTrue). This second value is

anticipated to be the most likely source of tuning sensitivity; it impacts the system

when occlusions are in force and CAT is most needed. To cast the importance of

these parameters on the CAT background statistics of Section 3.4.4, the following

observations are made:

• The case where CAT Pd occluded ≈ nominalOccludedPdTrue corresponds to

success of the background modeling stage in determining how severe an occlusion

might be.

• The case where CAT Pd occluded� nominalOccludedPdTrue corresponds to a

region where the background modeling declared an occlusion to be more severe

than it truly is.

• The case where CAT Pd occluded � nominalOccludedPdTrue corresponds to

a region where the background modeling failed to detect a true occlusion, or

estimated it to be less severe than it truly is. This is a particularly troublesome

case, as there is a strong likelihood for missed detections during the poorly

modeled occlusion; the tracker is more apt to erroneously delete the track when

this happens.

The sensitivity experiment of the parametric system is a set of Monte Carlo

trials across a two dimensional parameter space. In this space, the two dimensions

of CAT Pd occluded and nominalOccludedPdTrue are each swept across the range

[0, 0.5]. Each cell in this space corresponds to 200 Monte Carlo trials. The results
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of the experiment are illustrated in Figure 4.5. If the CAT technique had proven

to be extremely sensitive to a PCAT
D mismatch, one would expect the results to show

good performance on the diagonal, i.e., CAT Pd occluded = nominalOccludedPdTrue.

However, this is not apparently the case. Performance is relatively uniform across the

majority of the space, except for the lower left corner, which corresponds to

CAT Pd occluded� nominalOccludedPdTrue
⋂

CAT Pd occluded > 0.3 .

The first term of the intersection corresponds to the third observation above, in which

the model has grossly underestimated a true occlusion and performance is expected

to suffer. The significant change in the metrics near CAT Pd occluded= 0.3, how-

ever, suggests that some intrinsic threshold of the track maintenance logic is being

crossed. An examination of the track-drop threshold Tdrop in Equation (3.17) and

the track deletion logic in Equation (3.18) is helpful to understand this effect. When

nominalOccludedPdTrue→ 0, the likelihood of updating the track with a measure-

ment is low. Thus, the windowed cost C̄(k) → Ndrop ln[1 − PD]. In order for a track

deletion to occur in this case,

lim
nominalOccludedPdTrue→0

[
C̄(k) ≥ Tdrop

]
. (4.6)

Incorporating Equation (3.17) and simplifying, this becomes

Ndrop ln[1− PD] ≥−Mdrop ln [1− PD]− (Ndrop −Mdrop) ln

[
PDp

SS
drop(z|x)

βFA

]

ln [1− PD] ≤ ln

[
PDp

SS
drop(z|x)

βFA

]

PD ≥
[
pSSdrop(z|x)

βFA
+ 1

]−1
. (4.7)

So, the ability to delete any track as nominalOccludedPdTrue→ 0 is dominated by

an inequality of three intrinsic tuning parameters, i.e., constants. In this particular
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experiment, the inequality becomes PD ≥ 0.3, explaining this significant change in

the results. In Figure 4.5, the top region of the plots represents where the inequality

is violated and tracks cannot be deleted during occlusion. The favorable performance

in this region is largely a consequence of the simplifying single-target assumptions in

the parametric experiment framework. Nevertheless, Equation (4.7) is an important

consideration in a CAT system. Beyond this finding, the original intent of sensitivity

analysis seems to be favorably answered. In the region satisfying Equation (4.7) – the

bottom portion of the plots in Figure 4.5 – the system performance does not depend

on carefully matching CAT Pd occluded to nominalOccludedPdTrue.

4.2 Tracking Experiment

While the parametric experiment was extremely useful in analyzing the effects

of various operating conditions (OC’s), further study was required that incorporated

the full aspects of the MHT system. Furthermore, a full rendering of HSI data was

required to allow incorporation of the detection algorithms and testing of the SRM

methods presented in this section. As such, fewer instances over a variety of OC’s is

available, but the fidelity of the simulation and ensuing results is compelling and in

fact necessary to validate the parametric study.

The scenario has been rendered with DIRSIG at 10Hz temporal sampling with

a notional hyperspectral instrument mounted to an airborne platform and oriented

towards nadir. Platform motion has been excluded for simplicity, but is more gen-

erally resolved with registration techniques. The observation geometry and optical

design yield a ground-sample-distance of 0.5m and an overall field-of-view of 0.3km2.

A spectral bandwidth of 0.4µ−1µ at 0.01µ resolution results in 61 bands. This is rep-

resentative of a realizable silicon-based visible-light MOS instrument. The HSI data

have been rendered with 560 lines and 880 samples of spatial resolution. Each sample

is sub-sampled in a 3x3 fashion, such that nine independent spectral radiance values

are computed and linearly mixed. This approximates the spectral mixing which is

common to real HSI data.
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(a) Purity (b) Completeness (c) Delta cardinality

Figure 4.5: Parametric experiment results for the time-domain nature of occlu-
sions. In this test, CAT statistics are utilized. The three metrics of (a) purity, (b)
completeness, and (c) delta cardinality are plotted across two related parameters.
CAT Pd occluded is an intrinsic tuning parameter which is enforced during occlusion
events, and is intended to estimate the extrinsic parameter nominalOccludedPdTrue.
In order to visualize the relatively narrow range of results for these three metrics in
this Monte Carlo experiment, the range of the colormap is not [0, 1] in these plots.
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Approximately 1000 frames of imagery have been rendered, accounting for 100

seconds of moving-vehicle data. The dataset has been rendered in dense-hyperspectral

mode. This provides more hyperspectral pixels than would be available from any

MOS instrument, and therefore is down-sampled according to the exploitation algo-

rithm and SRM under test. Additionally, panchromatic imagery has been derived

from the spectral data and represents the video-rate imaging channel available on

the MOS instrument. A traditional frame-to-frame motion detection technique has

been performed on this panchromatic channel, resulting in motion detections suit-

able for tracking. The intentional addition of modelled noise into the data results

in false-alarm motion detections. Occlusion, illumination effects, and low-contrast

vehicles result in frequent missed-detections. Two groups of tracking experiments

have been performed: a series of uniform-statistic “control” tests and an innovative

context-aided test. The vehicle population and motion are the same for both tests.

The motion detection process was precomputed and stored such that all tests would

encounter exactly the same false-alarms and missed-detections.

For the uniform-statistic tests, values for PD, βNT, and βFA were set according

to the final row in Table 3.1. These values were empirically determined and are

known to produce good tracking results for this combination of scenario, motion-

detector, and MHT tracker. For the context-aided test, a full hyperspectral cube was

formed from the data. The manual, offline, background modeling technique described

in Section 3.4.1 was applied, resulting in a functional classification of background

materials in the scene. These were converted into spatially-dependent background

statistics maps according to the entries in Table 3.1.

4.2.1 Data Synthesis. The tracking experiment has been formed around

the RIT “Megascene” scenario developed by RIT and distributed with DIRSIG.

Megascene is a geo-specific model of a portion of Rochester, New York. Suburban

in nature, if offers a moderately dense road network and many occlusions, some of

them short in duration, while others are long in duration. An area of approximately
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Figure 4.6: A pseudocolor rendering of the Megascene synthetic environment. This
image was derived from a hyperspectral rendering performed with DIRSIG.

0.3km2 near Dake Junior High School (43.217851N, 77.598447E) serves as the area

of interest, shown in Figure 4.6.

A population of 211 moving vehicles has been formed, and random waypoint

navigation has resulted in a difficult tracking challenge. The Simulation of Urban

Mobility (SUMO) traffic simulation package [33] has been used to apply accurate

kinematics and traffic rules to the vehicle motion. SUMO is a microscopic (discrete

vehicles), discrete-time dynamics tool with an emphasis on traffic behavior for large

and congested road networks, illustrated in Figure 4.7. The vehicle geometries con-

sisted of several generic sedan, station-wagon, and pickup truck models available in the

Megascene distribution. The vehicles were “painted” with hyperspectral reflectance

signatures provide by the Air Force Research Lab in a 41 vehicle dataset. These sig-

natures were measured from donor civilian vehicles by an Advanced Spectral Devices

Incorporated Field Spectrometer and are shown in Figure 4.8. For each of the 211
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(a) SUMO road network

(b) SUMO simulation dynamics

Figure 4.7: An illustration of the SUMO road traffic simulator. In (a), a vector rep-
resentation of the road network of the Rochester, New York area is shown. This road
network became the input to SUMO. In (b), a screenshot is given of SUMO processing
a random traffic simulation for incorporation in the Megascene environment.

67



www.manaraa.com

vehicle trajectories output by SUMO, a vehicle geometry and hyperspectral signature

were randomly drawn and assigned for the duration of the experiment.

4.2.2 Semi-Automated Background Modeling. The first stage of the tracking

experiment required an implementation of the semi-automated background modeling

technique described in Section 3.4.1. The empirically determined NDVI threshold

was set at 0.18, resulting in the vegetation detection illustrated in Figure 4.9. A

comparison to the pixel-level-truth output from DIRSIG indicates a probability of

vegetation detection of 0.93, where the criterion for success was that pixels with a

true majority of vegetation content should be declared vegetation, and others should

not. The proportion of declared vegetation pixels which were not a true majority of

vegetation is 0.003. Next, the empirically determined tree-index threshold was set at

1 × 10−5, resulting in the tree canopy detection illustrated in Figure 4.10. Again, a

comparison to the pixel-level-truth indicated a probability of tree canopy detection of

0.80, and a proportion of false detection of 0.086. Notably, this detection probability

is computed against the entire population of pixels in the image. If the detection

probability is considered against only the population of thresholded vegetation pixels,

it rises somewhat to 0.89. The next portion of the background modeling consisted

of selecting training samples for the AGRLVQI classifier. As the vegetation portions

of the scene have already been identified, this step is primarily concerned with dis-

cerning the remaining functional elements of the scene, e.g., building materials and

pavement materials. Figure 4.11 illustrates portions of the image from which training

samples were manually selected. Experience suggests that separating surface pave-

ment materials from common roofing materials is a challenging problem, particularly

since many of the constituent elements are the same, e.g., asphalt, gravel, and sand.

An effective means to overcome this problem is to separate the two functional classes

into several sub-classes, where each sub-class is somewhat spectrally distinct. Asphalt

impregnated roofing shingles, for example, tend to include dyes for aesthetic purposes.

These dyes are dominated by several common colors. Surface pavement tends to be
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Figure 4.8: A plot of the mean of the hyperspectral reflectance signatures for 41
vehicles measured by AFRL. A variety of makes, models, years, and colors were
included.
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Figure 4.9: An illustration of the vegetation detection stage of background model-
ing. The underlying image is a pseudocolor rendering of the hyperspectral cube. The
bright green and yellow colors indicate pixels which exceeded the thresholded NDVI
test and were declared vegetation. According to truth, the bright green pixels are
majority vegetation, and therefore represent accurate detections. The bright yellow
pixels are not majority vegetation, and therefore represent false detections.
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Figure 4.10: An illustration of the tree canopy detection stage of background model-
ing. The underlying image is a pseudocolor rendering of the hyperspectral cube. The
bright green and yellow colors indicate pixels which exceeded the thresholded tree-
index test and were declared tree canopy. According to truth, the bright green pixels
are majority tree canopy, and therefore represent accurate detections. The bright
yellow pixels are not majority tree canopy, and therefore represent false detections.
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Table 4.3: The hierarchy of training classes for the AGRLVQI classifier used in the
semi-automated background modeling stage.

Training Class Functional Material

light asphalt road

surface pavement
medium asphalt road

driveway

parking lot

water (in pools) water

pale-blue roof

building materials

white roof

dark-red roof

light-red roof

black roof

gray roof

brown roof

light gravel roof

dark gravel roof

medium gravel roof

of either the asphalt or concrete type, and changes spectrally due to aging and weath-

ering. The hierarchy of training classes selected is given in Table 4.3. The trained

AGRLVQI classifier was executed on the non-vegetation portion of the hyperspectral

data, resulting in the classification shown in Figure 4.12. Next, the per-band spatial

segmentation code is executed on the hyperspectral cube. After collecting regions in

which all pixels share a band-wise segmentation solution, a single-band segmentation

is achieved. Figure 4.13 illustrates this segmentation. Finally, each region from the

spatial segmentation is assigned a functional identity according to the majority vote

of its member pixels in the classification results. This results in a labeled map, shown

in Figure 4.14 which has lower noise than the original classification results. Values

for PD are assigned according to the empirically derived mapping shown in Table 3.1,

resulting in the mapped PD shown in Figure 4.15.
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Figure 4.11: An illustration of the AGRLVQI training sample selection stage of
background modeling. The underlying image is a pseudocolor rendering of the hy-
perspectral cube. The blue ellipses indicate areas from which pavement training
signatures were taken. The green ellipses indicate areas from which building material
training signatures were taken.
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Figure 4.12: An illustration of the AGRLVQI classification results during back-
ground modeling. The vegetation pixels were previously identified and excluded from
the classification; they are orange in this illustration. The remaining pixels assigned
a color according to their parent class (functional material). Blue pixels are road
surface, and green pixels are building materials.
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Figure 4.13: An illustration of the spatial segmentation stage of background mod-
eling. Each color represents a region of the scene in which all pixels have a common
spatial segmentation throughout all bands of the hyperspectral cube. Notably, the
colors are randomly assigned and are allowed to repeat; so non-adjacent regions with
similar colors are not necessarily similar.
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Figure 4.14: An illustration of the final background model for the semi-automated
technique. Here, each spatial region is assigned a class label based upon the major-
ity vote of the member pixel’s spectral classification results. The color assignment
was arbitrary but consistent with Figure 4.12: orange indicates grass, blue indicates
pavement, dark red indicates tree canopies, and green indicates buildings.

76



www.manaraa.com

F
ig

u
re

4.
15

:
A

n
il
lu

st
ra

ti
on

of
th

e
m

ap
p
in

g
of

th
e

b
ac

k
gr

ou
n
d

m
o
d
el

in
to

a
sp

at
ia

ll
y

d
ep

en
d
en

t
P
D

m
ap

.
T

h
e

co
lo

r
b
ar

on
th

e
ri

gh
th

an
d

si
d
e

in
d
ic

at
es

th
e

va
lu

es
of
P
D

fo
r

va
ri

ou
s

co
lo

rs
in

th
e

m
ap

.
T

h
e

m
ap

is
d
om

in
at

ed
b
y

se
ve

ra
l

fu
n
ct

io
n
al

el
em

en
ts

:
re

d
fo

r
op

en
ro

ad
s

an
d

fi
el

d
s,

b
lu

e
fo

r
b
u
il
d
in

gs
an

d
tr

ee
ca

n
op

ie
s,

an
d

gr
ee

n
fo

r
sh

ad
ow

ed
ro

ad
s.

77



www.manaraa.com

4.2.3 Adaptive Background Modeling. Following the theory presented in Sec-

tion 3.4.2, an analysis has been performed to simulate the efficiency gain of adaptive

background modeling. This process begins with the initialization of a HSI process-

ing system. Recall that any autonomous HSI exploitation technique, which processes

both measured (mission-time) HSI data and a priori HSI data, must compensate for

atmospheric effects. Therefore, an empirical line calibration (ELC) is performed. This

experiment utilizes an in-scene spectral calibration fiducial in the form of a large, cir-

cular, bicolor panel with known spectral reflectance. The panel is clearly visible in the

open field in Figure 4.6. Notably, atmospheric compensation techniques exist which

have no dependance upon in scene fiducials; an employment of such a method would be

a necessary step towards full automation of this process. The measured spectral radi-

ance of the light and dark portion of the panel is illustrated in Figure 4.16. One sensor

acquisition of this panel, coupled with the panel’s known reflectance, is sufficient to es-

tablish the ELC for the remainder of the experiment. Hence, a radiance-to-reflectance

conversion is possible for all subsequent spectral measurements. The spectral region

of known-significant water-absorption between 0.93µ and 0.96µ clearly has poor signal

to noise ratio and is discarded. The last portion of the HSI processor initialization

is concerned with the spectral classifier. The semi-automated background modeling

technique for which results were shown in Section 4.2.2 incorporated several inde-

ces and a spectral classifier. In contrast, this adaptive method will only apply an

AGRLVQI model which has been trained on reference spectra. Furthermore, the set

of classes has been greatly simplified relative to the semi-automated method. Here,

the system is permitted no knowledge of scene content with which to “tune” a set of

training classes – only opportunistic spectral libraries are used to form a minimal set

of functional classes. The training data is sourced from the United States Geological

Survey (USGS) [16], the Nonconventional Exploitation Factors Dataset (NEFDS) [4],

and the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER)

spectral library [9]. The hierarchy of training classes to functional materials is given

in Table 4.4, and the training classes are illustrated in Figure 4.17. Recalling Equa-
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Figure 4.16: The measured radiance of the bicolored spectral calibration fiducial.
While both materials were designed to be relatively constant in their spectral re-
flectance, the atmospheric absorption has caused significant attenuation in portions
of the spectrum. The most significant attenuation is centered at 0.94µ, which is a
known water absorption band.

Table 4.4: The hierarchy of training classes for the AGRLVQI classifier used in the
adaptive background modeling stage.

Training Class Functional Material

asphalt pavement
pavement

concrete pavement

asphalt roofing shingles roof

distressed/healthy grasses
grass

soils
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Figure 4.17: An illustration of the a priori spectral reflectance values used to train
the adaptive background classifier. Each curve represents the mean of a population
of samples for that particular class.
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tion (3.29), an estimate of the transitional density function p(z|φ) must be obtained

through a confusion matrix analysis of the training data. This is achieved by present-

ing the fully trained AGRLVQI model with hetergenous mixtures of training samples

and recording the resulting class declarations. After 100 trial mixtures of each true

class, the confusion matrix illustrated in Figure 4.18 was obtained. This confusion

matrix represents a reasonably successful ability to discern the functional classes. At

this point the experiment initialization is complete and except for the simplifying fidu-

cial, only a priori spectral signatures have been used. The experiment now transitions

to mission-data and receives no further human input.

During the online, or mission stage, an adaptive HSI instrument such as the

RITMOS would be addressed at each frame of time to select and measure a limited

number of spectral pixels. The remaining pixels are measured as a panchromatic

image. The adaptive background modeling uses exactly the same panchromatic image

segmentation technique as the semi-automated background modeling. The resulting

segmented regions were illustrated in Figure 4.13, and are used as the basis for this

experiment. It is convenient to choose a single HSI cube, which has been rendered as if

it were acquired in a single frame. Since the background and platform are static, this

cube will serve for all subsequent frames, with no loss of experiment fidelity. Also for

convenience, each pixel in the cube is immediately classified by the AGRLVQI model

and stored in a cache of classifier output. After applying the functional material

hierarchy, a labeled mapping is obtained, illustrated in Figure 4.19. This represents

the potential end-state of the adaptive background modeling if it were allowed enough

time to visit each pixel, and if the panchromatic segmentation had worked perfectly. A

consequence of this segmentation on the attainable adaptive background model will be

discussed momentarily. Given the sensor constraints, this full visitation would require

560 frames (one per line). Next, the segment class label probabilities are initialized to

uniform distributions as in Equation (3.28), i.e., each segment has equal probability

to be of any class. The iterative portion of the background modeling then begins.

Each iteration k starts with updating the region entropy h(k) (Equation (3.32)) and
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(a) native classes

(b) functional classes

Figure 4.18: Results of the confusion matrix analysis for the adaptive background
modeling technique. Each cell shows the ratio of times that a heterogenous mixture
of a true class (row) was declared as a class (column) to the total number of times
the true class was presented. Ideally, all declarations would lie on the diagonal. The
native classes in (a) are reduced via the hierarchy to the final functional classes shown
in (b).
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Grass Pavement Roof Tree

Figure 4.19: The map of class labels from the dense classification test. This repre-
sents the end state of the adaptive background modeling – given unlimited iterations
and perfect region segmentation – where each pixel is measured and classified inde-
pendently.
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utility u(k) (Equation (3.33), (3.34), or (3.35)). Based upon the maximum utility

constrained by the sensor capability, e.g., requesting only one HSI pixel per column

in the RITMOS instrument, the SRM determines which HSI pixels to collect. Each

pixel is then incorporated into the region statistics according to Equation (3.30), and

the maximum a posteriori class identity φMAP of each region is determined according

to Equation (3.31).

The performance metric for the adaptive background modeling process is the

probability of correct classification PCC . For the sake of this evaluation, the labeled

mapping in Figure 4.19 will serve as the truth. The metric PCC is then the percentage

of pixels of φMAP which match the corresponding truth pixel.

The three utility functions described in Section 3.4.3 have been tested in in-

dependent trials of the adaptive background modeling process. The resulting PCC

at each frame in time is shown in Figure 4.20. Recall that the adaptive background

modeling process is intended to give the optimal at-any-time answer for φMAP(k) at

any k. The results show a favorable initial PCC followed by a rapid initial increase

until a point of diminishing returns is reached. The uentropy utility function shows

some instability as the model matures, particularly after frame 50. This corresponds

to regions of relatively large area transitioning between right and wrong φMAP(k). A

consequence of the Bayesian ID process is that although the class probabilities for

a region may change gently as new measurements are incorporated, the maximum a

posteriori answer will change abruptly. The u norm
entropy

utility function has the best bal-

anced performance with the fewest PCC transients. Interestingly, the urandom performs

quite well given it is random sampling, although it does suffer the most aggressive

transients. This lends credence to the rule-of-thumb in compressive sensing that when

Nyquist sampling of a space is too costly, a simple random sampling with intelligent

reconstruction is a good minimal-effort substitute.

Next, a selection of frames from the normalized entropy SRM will be described.

At the first frame, Figure 4.21, the system requests 880 HSI pixels (one per column)
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Figure 4.20: An illustration of the performance of the various adaptive background
model SRMs. The three forms of the utility function u are the entropy, normalized
entropy, and randomness.
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in a random fashion because the entropy and utility are initially uniform. The class

labels are already sufficiently clear enough to discern portions of roads, buildings, and

tree canopies. At this first frame – 0.1 seconds into the vignette – more than half of

the almost one half million pixels have been correctly labeled.

At the second frame, Figure 4.22, the entropy and utility maps now contain

a great deal of structure. The utility map in particular is almost bimodal: there

are many regions which successfully classified in the first frame of measurements and

hence have low utility. For example, the large soccer field in the middle of the frame,

which appears dark blue in the utility map. The selected pixels are now uniformly

distributed across the regions with high utility, and markedly absent on the regions

which met with success in the first frame. The class labels have improved by two more

percentage points, which is most noticeable in the more clearly defined tree canopies.

Certain large regions with erroneous labels exist. The large roof (brown) region in

the middle of the frame should be predominantly grass (green).

At the tenth frame, Figure 4.23, the entropy and utility maps have become more

consistent. There are fewer large regions with extremely high utility. The SRM has

naturally gravitated to refining smaller regions. The class labels have continued to

improve, reaching PCC = 0.61. Large erroneous regions still persist. It is insightful,

however, to note the decrease in entropy from the second to tenth frame.

At the one-hundredth frame, Figure 4.24, the entropy and utility maps have

become very uniform, with only troublesome regions still discernible. There are no

large regions with high utility. This follows from the normalization term in Equa-

tion (3.34). The class labels have not improved significantly since frame 30, having

reached PCC = 0.66. There are few large erroneous regions in the class label map

remaining. The large roof (brown) region in the middle of the frame was resolved in

frame 23.

Recognizing that the original panchromatic spatial-segmentation approach has

no hope of separating some materials, there will certainly be segments with het-
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Figure 4.21: The adaptive background modeling results after one frame. The en-
tropy (a) is initially uniform. The utility (b) is also uniform. The red crosses indicate
the pixels which the SRM selected for HSI measurement at this frame. The maximum
a posteriori class identity mapping shown in (c) already contains enough information
to discern roads and buildings, with some notable errors.
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Figure 4.22: The adaptive background modeling results after two frames. The
entropy (a) and utility (b) now show the structure of the scene. The maximum a
posteriori class identity mapping shown in (c) is now demonstrating more refined tree
canopy segmentation.
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Figure 4.23: The adaptive background modeling results after ten frames. The
entropy (a) and utility (b) are becoming more consistent, with fewer large regions of
high value. The focus of the utility has shifted towards refining smaller regions. The
maximum a posteriori class identity mapping shown in (c) has been further refined
to resolve individual houses and portions of road between tree canopies.
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Figure 4.24: The adaptive background modeling results after 100 frames. The
entropy (a) and utility (b) are now fairly uniform. The maximum a posteriori class
identity mapping shown in (c) is now essentially as good as it will get. Dominant errors
include single regions that clearly were mis-segmented by the spatial segmenter, and
hence contain heterogenous HSI measurements.
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erogenous materials – and hence, high entropy. As an example, consider a field of

grass bisected by an asphalt road. Given the right conditions (grass health, asphalt

weathering, and panchromatic sensor response), it is possible that the panchromatic

spatial segmentation will not discern a difference, combining the field and road into

a single segment. This problem could be mitigated by occasionally subdividing each

segment having high entropy, despite a relatively large number of observations. The

child regions ought to be chosen to have lower average entropy than their parent.

Notably, child regions would inherit observations from their parent according to their

new boundaries, such that history is not lost. Such a region splitting technique has

not been implemented here, but would be a good candidate for a follow-on effort.

The best attainable adaptive background model is clearly suboptimal – being capped

at PCC = 66% by frame 30 – due to this limitation. Or, a hybrid of the utility-

function-based SRM and a fully-swept HSI cube could be utilized. In such a system,

the adaptive sensor would be used according to the utility-function SRM for a cer-

tain small number of frames, e.g., 30, providing a useful background model in only

three seconds of time. Then, the adaptive sensor could be commanded to measure all

remaining HSI pixels in the scene, and a dense classification could be performed. In

this way, and assuming stationary sensor field of view, the CAT system would have a

PCC = 60% answer in three seconds, and a PCC = 100% answer within one minute.

The entire process would remain autonomous.

4.2.4 Tracking Testbed. A tracking testbed has been augmented to serve as

the CAT testing framework. This testbed is comprised of a mature MHT and associ-

ated logic, e.g., motion detector, association solver, coordinate conversions, Kalman

filter and input/output management. It is primarily written in Matlabr , although

certain portions have been ported to C++ and used via the Matlabr extensions (MEX)

interface. A screenshot taken from the testbed in use is shown in Figure 4.25. Several

defining characteristics of the tracking testbed include:

• A pinhole camera model with an azimuth/elevation measurement space.
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Figure 4.25: A screenshot of the tracking testbed in use.

• Digital terrain elevation data (DTED) derived terrain-intersection method for

azimuth/elevation measurement augmentation into a three-dimensional mea-

surement space.

• Internal easting, northing, up (ENU) state space with position, velocity, and

acceleration components – a nine-dimensional state space.

• Nearly constant velocity target dynamics model.

• Single-frame track initiation, in which every measurement is given the chance

to initialize a new track, even it if associated with a track or tracks in other

hypotheses.

• A single MHT construct for both track initialization and track extension.

• The linear Kalman filter for state estimation.

4.2.5 Truth and Scoring. There are many methods for assessing the perfor-

mance of a ground-vehicle tracking system. First, a precursory truth-to-track associ-
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ation is performed. Truth is taken from the SUMO output. For each true vehicle i

at time k, the sufficiently spatially close and valid tracks form the gated-set G(i, k).

Valid tracks are those which have, at that time, already been confirmed and have not

yet been dropped. A global-nearest-neighbor assignment is performed between the

valid tracks and truth objects at each k. This assignment is mutually exclusive (done

without replacement), and forms the function I(i, k) which either maps true object i

at time k to a positive, natural, track identity (I(i, k) ∈ N1 ∈ G(i, k)) or to no track

(I(i, k) = 0.)

4.2.6 Metrics. The following is a set of well-known multi-target tracking

metrics which have been identified as most likely to demonstrate the effects of CAT.

The metrics in this section are extensions to the simpler parametric metrics defined

in Section 4.1.1. Here, additional complexity is necessary to deal with the multiple-

target, multiple-track nature of the tracking testbed.

Track completeness is defined as

Mcomp(k) =
|i : I(i, k) 6= 0|

Ntrue(k)
, (4.8)

where |·| is the set counting operator used here to count the valid assignments, and

Ntrue(k) is the number of true objects at time k. Notably, Ntrue(k) includes all tracks

within the scenario area, including those which are occluded or stopped. Computing

the average completeness from Equation (4.8) over all frames, M̄comp, provides a

measure of how well the tracker “covers” every true object with tracks throughout

the scenario. It lies on the range [0, 1], where 1 indicates ideal coverage. As with

the single target case, track identity is of no consequence to M̄comp. Should a track

drop and immediately be replaced by a new track on the same true vehicle, i.e., an

identity-swap, M̄comp is not penalized.
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Conversely, track purity is not concerned with coverage, but with track identity

over the entire scenario K:

Mpure(i) =
|k : I(i, k) = mode I(i,K)|

|k : I(i, k) 6= 0| , (4.9)

which is the ratio of the frames in which a true object is assigned its most frequently

occurring identity to the frames in which it is assigned any track identity. The aggre-

gate purity is the same ratio extended to all true objects:

M̄pure =

∑
∀i |k : I(i, k) = mode I(i,K)|∑

∀i |k : I(i, k) 6= 0| . (4.10)

It lies on the range (0, 1], where 1 indicates an identity assignment is entirely consis-

tent. As M̄pure → 0, identity swapping occurs more frequently.

Track spuriousness is the ratio of tracks not spatially close to any true object,

divided by the number of true objects. Recall that spatially close tracks are within

the gated set G(i, k).

Mspur(k) =
Ntrack(k)− |⋃∀i G(i, k)|

Ntrue(k)
, (4.11)

where Ntrack(k) is the number of tracks at time k. When Mspur = 0, every track can

be explained by a true object; when Mspur > 0, some tracks are false-alarm tracks.

The average spuriousness across all frames is M̄spur.

Track redundancy is the ratio of tracks spatially close to any true object, divided

by the number of true objects:

Mredund(k) =
|⋃∀i G(i, k)|

Ntrue(k)
. (4.12)

When Mredund(k) > 1, some true objects are being overrepresented with extraneous

tracks. The average redundancy across all frames is M̄redund.
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The cardinality of the truth, Ntrue(K), is the number of unique truth objects in

the entire scenario. The cardinality of the tracks, Ntrack(K), is the number of unique

identities assigned by the tracker over the entire scenario. The difference is

∆card = Ntrack(K)− Ntrue(K) , (4.13)

which is the cardinality error, and is ideally 0.

4.2.7 Results. From the 100 seconds of synthetic data, three temporally

non-overlapping vignettes of approximately 30 seconds each were identified. These

vignettes were processed by the tracking testbed with a variety of parameter sets in

uniform and CAT configuration. Splitting the data into vignettes was a matter of

convenience, as it allowed for a threefold increase in the number of parallel testbed

executions across a set of available computers. Each run of the tracking testbed on

a single vignette required approximately 12 hours of computation time on a modern

personal computer. This time accounts for all aspects of the testbed: detection,

association scoring, MHT maintenance, image annotation, and metrics computation.

For the uniform background statistics test, the PD was identified as the first order

statistic of influence. Therefore five values were selected for PD (0.999, 0.970, 0.900,

0.800, and 0.500). The first three selections were made based on prior empirical

experience in tuning this particular tracking system on other datasets. The remaining

two selections were chosen as extended test cases. A set of testbed runs was performed

for each. One additional set of testbed runs was performed with the testbed in

CAT mode, operating according to the adaptive background statistics described in

Section 3.4.4. The resulting metrics for both the context-aided and uniform tracking

tests are given in Table 4.5.

Several trends are apparent in the results. For the uniform background statistic

runs, completeness improves as PD decreases, suggesting that the tracker is confirm-

ing tracks quicker and deleting them slower. The penalty for such behavior comes in

the form of deteriorating spuriousness and delta cardinality. This implies that as PD
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decreases, an increasing number of the tracks are invalid. Since redundancy is tightly

following completeness in all runs, the tracker is apparently not creating redundant

tracks in close proximity to true targets. Finally, the purity metric is relatively stable

across the uniform background statistic runs. This suggests that in a uniform back-

ground statistic system, an improvement in purity is unlikely to be achieved by tuning

PD. In contrast to empirical experience on other datasets, the tested’s performance

among the uniform background statistic runs had the best balanced performance at

PD = 0.800.

Upon inspection of the CAT results, the high cardinality error coupled with

lower than expected purity and completeness is immediately apparent. A frame-by-

frame inspection of the annotated CAT imagery indicated an unanticipated effect of

CAT-based track scoring with respect to measurement-to-track association. A rel-

atively frequent occurrence in the results is a post-occlusion track swap effect, an

example of which is given in Figure 4.26. In many cases, the CAT system successfully

coasted tracks through low PD occlusions, only to swap them with a new track im-

mediately after measurements resumed post-occlusion. Recalling that this tracking

system uses a brute-force, single-frame track initialization technique, there are always

numerous new tracks present. These immature tracks are hypothetical initializations,

but are generally not confirmed, and therefore do not confuse the operator or reduce

tracking metrics. However, should one of these immature tracks exist in a high PD

region nearby a coasting mature track which is in a low PD region, the tracks will

be in competition for new measurements post-occlusion. The mature coasting track

may register as being in a low PD condition for several frames after the occlusion

is over due to error in the background model or error in the state estimate of the

target. Due to the CAT statistics – by design – it is extremely inexpensive in terms

of association cost to continue coasting such a track without measurements. Con-

versely, the immature false track in a high PD region is somewhat more expensive in

terms of association cost to coast without measurements, regardless of its poor health.

The convergence of these causalities is not guaranteed after each occlusion. However,
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(a) Cost versus time for the tracks in question. Circles indicate measurement-to-track associations.
Track 16 initializes at time 3.60s from “lucky” detections through a dense tree canopy – therefore
a low PD region. Track 319 initialized from a nearby false alarm outside of the canopy – a high
PD region. Note that prior to time 5.00s, track 319 is not shown in this plot as it existed in a
hypothesis other than the top hypothesis. Track 319 coasts without measurements until time 6.70s
when it begins to “steal” measurements from track 16. This represents the “unfair” advantage that
unhealthy, unconfirmed, coasting tracks in high PD regions hold over any nearby track in a low PD

region.

(b) Time = 5.60s. Track 319
has not yet been confirmed, so
does not appear in the track
output report. This is the
last measurement that track
16 will obtain. The green dot
is the current position esti-
mate for track 16. The blue el-
lipse is the one-second predic-
tion with covariance for track
16.

(c) Time = 7.20s. Track
319 has just confirmed, and
has “stolen” many measure-
ments from track 16 already
due to its higher PD. Here, the
red ellipse is the current posi-
tion estimate with covariance
for the unhealthy track 16.
The larger blue ellipse is the
one-second prediction with co-
variance for track 16. The
green dot is the current po-
sition estimate for track 319.
The smaller blue ellipse is one-
second prediction with covari-
ance for track 319.

(d) Time = 9.60s. Track
16 has just been deleted due
to a high track cost. Track
319 has updated with all post-
occlusion measurements.

Figure 4.26: An illustration of the CAT cost offset problem.
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should they happen, it seems that the proper track will always lose the post-occlusion

fight for measurements, allowing the immature track to confirm and “steal” all future

measurements while the proper track is deleted. This results in a track identity swap,

and can have a severe and negative impact on the track purity measurement. Since

the MHT is attempting to optimize the combined association costs, this undersirable

result is not a coincidence and can be directly attributed to the method used to com-

pute the association costs. As such, a mitigation method was developed as described

next.

While this track cost problem is not specifically systemic to the CAT system,

it does seem to be exacerbated by the presence of tracks with differing PD values – a

situation which never arises in the uniform-statistics system. This problem forced a

recall of an early design decision in which a dual-stage MHT system was considered,

wherein all measurements are first used to possibly extend confirmed tracks within the

extension MHT, and leftover measurements are then sent to the initialization MHT

to create new tracks. In such a system, the confirmation process involves porting

a track from the initialization MHT into the extension MHT. A primary argument

for this approach is to reduce computational complexity by using suboptimal tuning

parameters in the initialization MHT, especially by reducing hypothesis tree depth.

Recall that the depth of the hypothesis tree increases the deferred decision-making

capability of the MHT and has the potential to improve firm decisions. However,

this comes at significant computational cost since the number of hypotheses is grow-

ing expoentially. A secondary argument for the dual-MHT approach is to segment

the confirmed tracks from the initializing tracks and give the confirmed tracks an

advantage while competing for measurements. This dual-MHT design was initially

rejected as overly complex with respect to algorithmic design, and the single-MHT

implementation was used instead with good results. This track cost problem, though,

motivates the need to favor confirmed tracks in the measurement-to-track association

solution. Therefore, an ad hoc confirmed track cost offset has been proposed and

implemented to mimic the desirable effects of the dual-MHT solution without the ad-
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ditional algorithmic complexity. Simply, the negative-log-likelihood cost modification

∆C(k) given in Equation (3.12) is modified to become

∆C(k) =


− ln [1− PD] miss

− ln
[
PDp(z

j
k|x

i
k)

βFA

]
update non-confirmed track

− ln
[
PDp(z

j
k|x

i
k)

βFA

]
− 5 update confirmed track ,

(4.14)

where the firm-track-offset of 5 was empirically selected, but is related to the slope of

the costs seen in Figure 4.26.

Repeating the CAT experiment with Equation (4.14) in force resulted in a sub-

jective elimination of the post-occlusion track-identity swap problem. It is reasonable

to assume that – given the presence of heterogenous PD values – this change would

affect CAT more significantly that the uniform-statistics system. In order to test the

validity of this claim, the uniform test with the best balanced performance was cho-

sen (PD = 0.800) and repeated with Equation (4.14) in force. The resulting metrics

from both repeated experiments are given in Table 4.6. Here, the CAT system has

benefited from the cost offset technique; the uniform background statistics system

has improved slightly. The most significant change is the delta cardinality for the

CAT system, which as improved from a 128 track deviation to only a 44 track devi-

ation. Comparing the delta cardinality of the CAT system (44) to that of the best

observed uniform background statistics system (63) indicates that the CAT system

was closer to the true cardinality of the scenario by 19 tracks. This is a 30% reduc-

tion in extraneous track identities, and represents 19 times in which the CAT system

properly maintained a target’s identity. The completeness and purity metrics for the

CAT system have improved to a point 4% beyond that of the best observed uniform

background statistics system.

Recalling the findings in Section 4.1.3, there are portions of the OC space in

which CAT is predetermined to be of no help, such as un-occluded segments of road.

The vignettes utilized here include a mixture of un-occluded roads, short occlusions
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Table 4.6: Results for the tracking experiment with a firm-track cost-offset applied.
Three temporally non-overlapping vignettes were identified within the synthetic data.
A single uniform parameter set with PD = 0.800 was selected to represent the best
uniform case. One additional parameter set was created with CAT statistics. The
aggregate column represents the performance for the respective parameter sets over
all three vignettes, and is calculated as the mean for M̄ metrics, and the sum for the
remaining (counting) metrics.

PD 0.800 CAT

vignette 1 2 3 Aggr. 1 2 3 Aggr.

M̄comp 0.8262 0.7302 0.8697 0.8087 0.8667 0.7593 0.9065 0.8442

M̄pure 0.8344 0.8624 0.8388 0.8452 0.8838 0.9019 0.8404 0.8754

M̄spur 0.0281 0.0307 0.0318 0.0302 0.0498 0.0380 0.0463 0.0447

M̄redund 0.8288 0.7345 0.8763 0.8132 0.8730 0.7645 0.9253 0.8543

Ntrack(K) 62 69 93 224 59 61 85 205

Ntrue(K) 47 54 60 161 47 54 60 161

∆card 15 15 33 63 12 7 25 44

where CAT is unnecessary such as a single tree canopy, and heavily occluded seg-

ments where the CAT system was the only observed technique for maintaing track

identity. Since the completeness and purity metrics are calculated over the entirety of

the vignettes – including the un-occluded portions – the 4% performance increase is

not insignificant. In contrast, the delta cardinality metric is a de facto judge of per-

formance in the most difficult portions of the vignettes. A track deletion in a heavily

occluded region results in one additional penalty to the delta cardinality regardless

of how challenging or benign the remainder of the vignette may be. Therefore, the

delta cardinality improvement of the CAT system over uniform background statistics

by 30% is a justifiable first-order result.

In order to illustrate the impact of CAT, selected excerpts from the annotated

output images are presented in a storyboard fashion. In Figure 4.27, a target tra-

verses a road segment with two medium-length occlusions over a span of six seconds.

The CAT system successfully maintains the track through both occlusions, while the

uniform background statistics system deletes the track both times.
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In Figure 4.28, a number of targets travel in opposing directions on a two lane

road. This excerpt is especially challenging due to an occlusion that covers only one

lane of the road. This creates additional ambiguity for the measurement-to-track

association solver. The CAT system is inferior to the uniform system in this excerpt

due to a delayed track confirmation with cascading effects. This is an example of

unintended consequences; normally a delay in track confirmation does little harm,

but here it causes track identity loss.

In Figure 4.29, two targets approach each other on a two lane road. Each target

encounters a medium-length occlusion. The uniform background statistics version

deletes one of the tracks during its occlusion, which permits a subsequent identity

swap with the other vehicle. The CAT system, however, is able to coast both tracks

through the occlusions and maintain track identity.

Finally, in Figure 4.30 the longest observed occlusion from all vignettes incor-

porates a road covered in dense tree canopy. The CAT system is able to maintain the

track through the 10s event, whereas the uniform background statistic system deletes

the track 1.9s into the occlusion.
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(a) The same frame of imagery from both the uniform (left) and CAT (right) tests. Firm-track cost-
offset is applied in both cases. The current position of each track is shown in green if it has associated
with a measurement on this frame and red if it has not. The one-second future prediction of track
location is shown in blue. Elipse sizes indicate uncertainty. Here, track 3 has entered occlusion due
to tree canopy. On the next frame, the uniform system deletes track 3.

(b) The CAT system has coasted track 3 through the occlusion. The uniform system has just
initialized a new track 1456 on the same object.

(c) Again, the CAT system is coasting track 3 through another occlusion. The uniform system will
delete track 1456 on the next frame.

(d) This example ends with the CAT system having successfully tracked the object through two
occlusions without loss of identity. The uniform system has swapped IDs twice.

Figure 4.27: An illustration of CAT maintaining track identity, whereas the uniform
system incurs multiple instances of track identity loss.
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(a) The same frame of imagery from both the uniform (left) and CAT (right) tests. Firm-track
cost-offset is applied in both cases. Here, tracks 7, 8, and 9 are Southbound. A Northbound vehicle
has just emerged from a tree and has been confirmed by the uniform system as track 1324.

(b) The lack of confirmed track for the Northbound vehicle has proven disastrous for the CAT
system. When the Southbound track 8 missed 3 subsequent detections near time 10.8s, the track
began to steer onto the Northbound vehicle. Here, track 8 has steered significantly Eastbound.

(c) The CAT system has finally confirmed track 634 for the Northbound vehicle, but it competes
with track 8 for measurements. Note the Southbound track 6.

(d) Finally, the CAT track 8 is deleted due to poor scores, and tracks 6 and 634 swap in the midst
of poor scores and high state covariance.

Figure 4.28: An illustration of CAT performing poorly compared to the uniform
system. Here, a delay in track confirmation (CAT) results in a cascaded set of track
swaps.
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(a) The same frame of imagery from both the uniform (left) and CAT (right) tests. Firm-track cost-
offset is applied in both cases. Here, an Eastbound vehicle exists at track 301 in both systems. A
Westbound vehicle is track 1891 in the uniform system, and 3234 in the CAT system. Both vehicles
are just about to enter occlusions.

(b) Both vehicles emerge from the respective occlusions. However, the uniform system has deleted
the track for the Westbound vehicle.

(c) Here, the Eastbound vehicle does not produce a measurement (note red circle in the CAT system).
However, the uniform system has allowed track 301 to “steal” the measurement from the Westbound
vehicle. This begins a track identity swap.

(d) Finally, the uniform system has lost the Westbound vehicle and continued its identity on the
Eastbound vehicle erroneously. The CAT system has maintained track identities.

Figure 4.29: An illustration of CAT preventing an identity swap by successfully
coasting a track through occlusion.
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(a) The same frame of imagery from both the uniform (top) and CAT (bottom) tests. Firm-track
cost-offset is applied in both cases. Here, a Westbound vehicle exists as track 433 in both systems.

(b) The vehicle has entered a long occlusion – 10s – in which it will be detected 26 times and missed
74 times. The uniform system has deleted the track 1.9s into the occlusion.

(c) An example of a frame in which the vehicle generated a measurement. This reduces the track
cost in the CAT system, reinvigorating the track. It is of little use in the uniform system, since it is
insufficient to form a new track.

(d) Near the end of the occlusion, several concurrent detections permit the uniform system to finally
form a new track on the vehicle. However, track identity loss has already occurred. The CAT system
successfully maintains the track identity.

Figure 4.30: An illustration of CAT preventing track deletion through an extended
occlusion.
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V. Conclusions

In this chapter, the contributions and results of the effort will be reviewed in order to

draw several important conclusions. First and foremost,

Does the novel context-aided tracking system outperform the current state-of-

the-art tracking system with uniform background statistics? Decidedly, yes.

The evidence to support this statement begins with the fundamental tracking

theory in Section 3.2. Accepted theory and practice supports the concept of track costs

based upon the statistics of the measurement system, which by virtue of occluding

elements are dominated by the background statistics themselves.

A compelling and comprehensive analysis was performed with a parametric

tracking simulator described in Section 4.1. The key finding from that experiment is

that – once isolated into a simplifying single-target situation – CAT improves track

purity and tracker cardinality by as much as 50% and completeness by as much

as 400%. Also insightful is that such performance increases are conditioned upon

extremely difficult scenarios, e.g., frequent and long occlusions; in benign conditions,

CAT neither helps nor harms the system.

Next in the chain of evidence, Section 3.4 presented two approaches with which

to develop a background model of the scene, identifying key functional elements with

the use of hyperspectral data. A semi-automated approach qualitatively arrived at

a very reasonable background model with minimal operator intervention. A novel,

adaptive, purely autonomous approach – a key contribution of this effort – was pre-

sented in Section 3.4.2 and supported with a new SRM technique in Section 3.4.3. In

Section 4.2.3, this SRM was tested and proven to converge to a 66% correct adaptive

background model in 1
18

th
the time of a non-adaptive approach – a 95% reduction in

sensor acquisition time. A hybrid technique was suggested which transitions from the

66% answer to the 100% answer as soon as it has been fully acquired, resulting in a

zero-latency model with a full-performance steady-state.
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The final evidence for the efficacy of CAT was given in the form of a high-fidelity

tracking testbed. A mature and relevant MHT was augmented to perform CAT with

the semi-automated background model in Section 4.2. An important finding regarding

the impact of CAT on single-stage MHT systems was uncovered; a compact and

effective solution was given in the form of a firm-track-cost-offset. This is another key

contribution to the body of tracking research. The final analysis showed that CAT

improved the completeness and purity of the tracking testbed by 4% over uniform

background statistics. While modest, this finding is justifiably defended by the range

of complexity of the tracking vignettes, i.e., the performance gain is diluted by benign

target activity much of the time. Another metric, the delta cardinality, has been

proposed as the most salient measure of performance gain in the CAT system. It

directly counts the number of times that track identity is preserved when difficult

problems are encountered; hence it is not diluted by benign activity. This metric

showed a dramatic 30% reduction in error by the CAT system relative to the best-

performing uniform background statistic system. In the population of 161 targets

throughout the vignettes, this accounts for 19 tracks – nearly 12% of the population –

which failed in the baseline system but were protected from track identity loss by the

CAT system. In many concepts of employment, the protection of even one single track

from identity loss is an important capability; any target could become high-value in a

targeting or forensics application. This is perhaps the most important evidence that

CAT is a viable approach.

5.1 Future Work

There are several opportunities for furthering this research effort. It remains

to demonstrate that the adaptive background modeling results in Section 4.2.3 could

approach the fidelity of the semi-automated method shown in Section 4.2.2. The key

to this shortcoming: a proper region-splitting approach in the adaptive model is a

ripe opportunity for future research.
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Hospitability maps were briefly discussed in Section 2.3.3, where their signifi-

cance to target state estimation was noted. This thesis has studied the generation of

background models to derive detectability statistics solely for the sake of track scoring

and maintenance. However, the same hyperspectral-derived background model could

be used to aide in the formation of a hospitability map. This hospitability map could

then be used in the target dynamics portion of the estimator. While doubly incorpo-

rating the background model – detectability and hospitability – requires a measure

of caution, there is reason to believe that future study on such a system would be

fruitful.

Another obvious extension of this effort would be to close the gap between

the adaptive background model and the tracking testbed. In Section 4.2.3, it was

noted that several simplifying assumptions were made for the sake of the iterative

modeling approach and lack of operator input. In particular, the class hierarchy was

simplified relative to that of the semi-automated approach in Section 4.2.2. Also,

the NDVI and tree-index pre-processing technique which worked well in the semi-

automated case was abandoned in favor of a classifier-only technique for the adaptive

case. There may be merit in revisiting this decision, particularly if stable, scene-

independent index thresholds could be determined for the separation of grass from

tree canopies. Ultimately, these enhancements to the adaptive background model

followed by its application in a tracking testbed would be a worthwhile endeavor.

In Section 2.4.4, it is observed that combining the HSI CAT system with an

HSI FAT system in a common architecture is an enticing prospect. The HSI FAT

performance shown in [54] coupled with the HSI CAT benefit shown in this thesis

is highly synergistic. The recent availability of adaptive HSI instruments makes the

performance gain even more likely.
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Appendix A. Matlab Code

Here, Matlabr code is included for the entirety of the parametric experiment pre-

sented in Section 4.1.

Listing A.1: (costTest/runSims.m)
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Simulation parameters

p = [];

p.time = 200;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Background parameters

p.pOcclusion = 0.01; %per -frame probability of an occlusion starting

% occlusion length is uniformly distributed between min and max:

p.minOcclusionDur = 1;

p.maxOcclusionDur = 20;

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Target parameters

p.pTgtArrival = 0.1; %per -frame probability of target arriving

p.pTgtDeparture = 0.005; %per -frame probability of target departing

p.kssMean = -5; %the mean kinematic cost of a healthy update

16 p.kssVar = 4; %variance in the above

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Measurement parameters

p.nominalClearPdTrue = 0.95; %probability of a detection (clear)

p.nominalOccludedPdTrue = 0.05; %probability of a detection (occluded)

21 p.pFalseAlarm = 0.05; %per -frame unconditional probability of a false alarm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Tracker tuning parameters

p.Nconf = 5; %prototypical num updates for confirm

p.Ndrop = 10; %prototypical window length for drop

26 p.Mdrop = 5; %prototypical num misses for drop

confirmFactor = 5; %lower confirms sooner

dropFactor = 5; %lower drops sooner

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Tracker derived parameters

31 p.pssConf = p.kssMean+confirmFactor*sqrt(p.kssVar);

p.pssDrop = p.kssMean+dropFactor*sqrt(p.kssVar);

% tracker statistics

p.CAT = false;

p.CAT_Pd_clear = p.nominalClearPdTrue;

36 p.CAT_Pd_occluded = p.nominalOccludedPdTrue;

%p.CAT_Pd_occluded = 1e-2;

p.CAT_BetaNT_clear = 1e-2;

p.CAT_BetaNT_occluded = 1e-5;

p.unif_Pd = 0.97;

41 p.unif_BetaNT = 1e-2;

p.BetaFA_multiplier = 1e-2; %multiplied by pd

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Which test to run?

46 % note: MC means Monte Carlo analysis

test = 0;

switch test

case 0 % run one sim and plot it

51 p.minOcclusionDur = 5;

p.maxOcclusionDur = 20;

p.unif_Pd = 0.8;

sim = makeSim(p);

plotSim(sim);

56 case 1 % MC pd (occluded) vs betaFA multiplier sweep CAT

tic;

p.CAT = true;
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pd = 0.02:0.04:1;

betaFA_mult = 10.^[1,0,-1,-2,-3,-4,-5,-6];

61 completenessByPd = zeros(2,length(pd));

purityByPd = zeros(2,length(pd));

deltaCardByPd = zeros(2,length(pd));

for pdIter = 1: length(pd)

for betaFAIter = 1: length(betaFA_mult)

66 p.CAT_Pd_occluded = pd(pdIter);

p.BetaFA_multiplier = betaFA_mult(betaFAIter);

mcRuns = 100;

completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

71 deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

76 deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityByPd (1,pdIter ,betaFAIter) = mean(purity);

completenessByPd (1,pdIter ,betaFAIter) = mean(completeness);

deltaCardByPd (1,pdIter ,betaFAIter) = mean(deltaCardinality);

81 purityByPd (2,pdIter ,betaFAIter) = std(purity);

completenessByPd (2,pdIter ,betaFAIter) = std(completeness);

deltaCardByPd (2,pdIter ,betaFAIter) = std(deltaCardinality);

end

end

86 time = toc;

figure;

imagesc(squeeze(purityByPd (1,:,:)) ,[0.75 ,1.0]);

set(gca ,’XTick’ ,1:length(betaFA_mult));

set(gca ,’XTickLabel ’,betaFA_mult);

91 xlabel(’BetaFA multiplier ’);

set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

ylabel(’Pd occluded ’);

colorbar;

96 title(’pd_occluded / betaFA mult , purity , CAT’);

saveas(gcf ,’1_pd_vs_betaFA_purity ’,’fig’);

figure;

imagesc(squeeze(completenessByPd (1,:,:)) ,[0.75 ,1.0]);

set(gca ,’XTick’ ,1:length(betaFA_mult));

101 set(gca ,’XTickLabel ’,betaFA_mult);

xlabel(’BetaFA multiplier ’);

set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

ylabel(’Pd occluded ’);

106 colorbar;

title(’pd_occluded / betaFA mult , completeness , CAT’);

saveas(gcf ,’1_pd_vs_betaFA_completeness ’,’fig’);

figure;

imagesc(squeeze(deltaCardByPd (1,:,:)) ,[0,0.5]);

111 set(gca ,’XTick’ ,1:length(betaFA_mult));

set(gca ,’XTickLabel ’,betaFA_mult);

xlabel(’BetaFA multiplier ’);

set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

116 ylabel(’Pd occluded ’);

colorbar;

title(’pd_occluded / betaFA mult , delta cardinality , CAT’);

saveas(gcf ,’1_pd_vs_betaFA_deltaCard ’,’fig’);

save 1_pd_vs_betaFA_CAT;

121 case 2 % MC pd vs betaFA multiplier sweep uniform

tic;

p.CAT = false;

pd = 0.02:0.04:1;
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betaFA_mult = 10.^[1,0,-1,-2,-3,-4,-5,-6];

126 completenessByPd = zeros(2,length(pd));

purityByPd = zeros(2,length(pd));

deltaCardByPd = zeros(2,length(pd));

for pdIter = 1: length(pd)

for betaFAIter = 1: length(betaFA_mult)

131 p.unif_Pd = pd(pdIter);

p.BetaFA_multiplier = betaFA_mult(betaFAIter);

mcRuns = 100;

completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

136 deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

141 deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityByPd (1,pdIter ,betaFAIter) = mean(purity);

completenessByPd (1,pdIter ,betaFAIter) = mean(completeness);

deltaCardByPd (1,pdIter ,betaFAIter) = mean(deltaCardinality);

146 purityByPd (2,pdIter ,betaFAIter) = std(purity);

completenessByPd (2,pdIter ,betaFAIter) = std(completeness);

deltaCardByPd (2,pdIter ,betaFAIter) = std(deltaCardinality);

end

end

151 time = toc;

figure;

imagesc(squeeze(purityByPd (1,:,:)) ,[0.75 ,1.0]);

set(gca ,’XTick’ ,1:length(betaFA_mult));

set(gca ,’XTickLabel ’,betaFA_mult);

156 set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

colorbar;

title(’pd / betaFA mult , purity , uniform ’);

saveas(gcf ,’2_pd_vs_betaFA_purity ’,’fig’);

161 figure;

imagesc(squeeze(completenessByPd (1,:,:)) ,[0.75 ,1.0]);

set(gca ,’XTick’ ,1:length(betaFA_mult));

set(gca ,’XTickLabel ’,betaFA_mult);

set(gca ,’YTick’ ,1:length(pd));

166 set(gca ,’YTickLabel ’,pd);

colorbar;

title(’pd / betaFA mult , completeness , uniform ’);

saveas(gcf ,’2_pd_vs_betaFA_completeness ’,’fig’);

figure;

171 imagesc(squeeze(deltaCardByPd (1,:,:)) ,[0,0.5]);

set(gca ,’XTick’ ,1:length(betaFA_mult));

set(gca ,’XTickLabel ’,betaFA_mult);

set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

176 colorbar;

title(’pd / betaFA mult , delta cardinality , uniform ’);

saveas(gcf ,’2_pd_vs_betaFA_deltaCard ’,’fig’);

save 2_pd_vs_betaFA_UNIF;

case 3 % MC Mdrop Ndrop sweep UNIFORM

181 tic;

p.CAT = false;

Mvals = [2,3,4,5,7,9];

Nvals = [10 ,15 ,20 ,25 ,30];

for Miter = 1: length(Mvals)

186 for Niter = 1: length(Nvals)

p.Ndrop = Nvals(Niter);

p.Mdrop = Mvals(Miter);

mcRuns = 200;

completeness = zeros(1,mcRuns);
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191 purity = zeros(1,mcRuns);

deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

196 purity(mcIter) = sim.purity;

deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityAll(Miter ,Niter) = mean(purity);

completenessAll(Miter ,Niter) = mean(completeness);

201 deltaCardAll(Miter ,Niter) = mean(deltaCardinality);

end

end

time = toc

figure;

206 imagesc(purityAll);

set(gca ,’XTick’ ,1:length(Nvals));

set(gca ,’XTickLabel ’,Nvals);

xlabel(’Ndrop ’);

set(gca ,’YTick’ ,1:length(Mvals));

211 set(gca ,’YTickLabel ’,Mvals);

ylabel(’Mdrop ’);

colorbar;

title(’Mdrop / Ndrop , purity , uniform ’);

saveas(gcf ,’3_Mdrop_Ndrop_purity ’,’fig’);

216 figure;

imagesc(completenessAll);

set(gca ,’XTick’ ,1:length(Nvals));

set(gca ,’XTickLabel ’,Nvals);

xlabel(’Ndrop ’);

221 set(gca ,’YTick’ ,1:length(Mvals));

set(gca ,’YTickLabel ’,Mvals);

ylabel(’Mdrop ’);

colorbar;

title(’Mdrop / Ndrop , completeness , uniform ’);

226 saveas(gcf ,’3_Mdrop_Ndrop_completeness ’,’fig’);

figure;

imagesc(deltaCardAll);

set(gca ,’XTick’ ,1:length(Nvals));

set(gca ,’XTickLabel ’,Nvals);

231 xlabel(’Ndrop ’);

set(gca ,’YTick’ ,1:length(Mvals));

set(gca ,’YTickLabel ’,Mvals);

ylabel(’Mdrop ’);

colorbar;

236 title(’Mdrop / Ndrop , delta cardinality , uniform ’);

saveas(gcf ,’3_Mdrop_Ndrop_deltaCard ’,’fig’);

save 3_Mdrop_Ndrop_UNIF;

case 4 % MC Mdrop Ndrop sweep CAT

tic;

241 p.CAT = true;

Mvals = [2,3,4,5,7,9];

Nvals = [10 ,15 ,20 ,25 ,30];

for Miter = 1: length(Mvals)

for Niter = 1: length(Nvals)

246 p.Ndrop = Nvals(Niter);

p.Mdrop = Mvals(Miter);

mcRuns = 200;

completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

251 deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

256 deltaCardinality(mcIter) = sim.deltaCardinality;
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end

purityAll(Miter ,Niter) = mean(purity);

completenessAll(Miter ,Niter) = mean(completeness);

deltaCardAll(Miter ,Niter) = mean(deltaCardinality);

261 end

end

time = toc

figure;

imagesc(purityAll);

266 set(gca ,’XTick’ ,1:length(Nvals));

set(gca ,’XTickLabel ’,Nvals);

xlabel(’Ndrop ’);

set(gca ,’YTick’ ,1:length(Mvals));

set(gca ,’YTickLabel ’,Mvals);

271 ylabel(’Mdrop ’);

colorbar;

title(’Mdrop / Ndrop , purity , CAT’);

saveas(gcf ,’4_Mdrop_Ndrop_purity ’,’fig’);

figure;

276 imagesc(completenessAll);

set(gca ,’XTick’ ,1:length(Nvals));

set(gca ,’XTickLabel ’,Nvals);

xlabel(’Ndrop ’);

set(gca ,’YTick’ ,1:length(Mvals));

281 set(gca ,’YTickLabel ’,Mvals);

ylabel(’Mdrop ’);

colorbar;

title(’Mdrop / Ndrop , completeness , CAT’);

saveas(gcf ,’4_Mdrop_Ndrop_completeness ’,’fig’);

286 figure;

imagesc(deltaCardAll);

set(gca ,’XTick’ ,1:length(Nvals));

set(gca ,’XTickLabel ’,Nvals);

xlabel(’Ndrop ’);

291 set(gca ,’YTick’ ,1:length(Mvals));

set(gca ,’YTickLabel ’,Mvals);

ylabel(’Mdrop ’);

colorbar;

title(’Mdrop / Ndrop , delta cardinality , CAT’);

296 saveas(gcf ,’4_Mdrop_Ndrop_deltaCard ’,’fig’);

save 4_Mdrop_Ndrop_CAT;

case 5 %Uniform Pd sweep , all metrics

tic;

p.CAT = false;

301 pd = 0.02:0.04:1;

completenessByPd = zeros(2,length(pd));

purityByPd = zeros(2,length(pd));

deltaCardByPd = zeros(2,length(pd));

for pdIter = 1: length(pd)

306 p.unif_Pd = pd(pdIter);

mcRuns = 200;

completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

deltaCardinality = zeros(1,mcRuns);

311 for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

deltaCardinality(mcIter) = sim.deltaCardinality;

316 end

purityByPd (1,pdIter) = mean(purity);

completenessByPd (1,pdIter) = mean(completeness);

deltaCardByPd (1,pdIter) = mean(deltaCardinality);

purityByPd (2,pdIter) = std(purity);

321 completenessByPd (2,pdIter) = std(completeness);

deltaCardByPd (2,pdIter) = std(deltaCardinality);
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end

time = toc;

figure;

326 h=[];

legends = {};

hold on;

h(end +1)=plot(pd,purityByPd (1,:),’bo -’);

plot(pd ,purityByPd (1,:)-purityByPd (2,:),’b--’);

331 plot(pd ,purityByPd (1,:)+purityByPd (2,:),’b--’);

legends{end+1} = ’Purity ’;

h(end +1)=plot(pd,completenessByPd (1,:),’gd-’);

plot(pd ,completenessByPd (1,:)-completenessByPd (2,:),’g--’);

plot(pd ,completenessByPd (1,:)+completenessByPd (2,:),’g--’);

336 legends{end+1} = ’Completeness ’;

h(end +1)=plot(pd,deltaCardByPd (1,:),’ms-’);

plot(pd ,deltaCardByPd (1,:)-deltaCardByPd (2,:),’m--’);

plot(pd ,deltaCardByPd (1,:)+deltaCardByPd (2,:),’m--’);

legends{end+1} = ’Delta Cardinality ’;

341 legend(h,legends);

xlabel(’Pd’);

saveas(gcf ,’5_Pd_sweep_uniform ’,’fig’);

save 5_Pd_sweep_uniform;

case 6 %Uniform Pd sweep , all metrics , logarithmic end test

346 tic;

p.CAT = false;

pd = 1 -10.^ -[1:10];

completenessByPd = zeros(2,length(pd));

purityByPd = zeros(2,length(pd));

351 deltaCardByPd = zeros(2,length(pd));

for pdIter = 1: length(pd)

p.unif_Pd = pd(pdIter);

mcRuns = 200;

completeness = zeros(1,mcRuns);

356 purity = zeros(1,mcRuns);

deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

361 purity(mcIter) = sim.purity;

deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityByPd (1,pdIter) = mean(purity);

completenessByPd (1,pdIter) = mean(completeness);

366 deltaCardByPd (1,pdIter) = mean(deltaCardinality);

purityByPd (2,pdIter) = std(purity);

completenessByPd (2,pdIter) = std(completeness);

deltaCardByPd (2,pdIter) = std(deltaCardinality);

end

371 time = toc;

figure;

h=[];

legends = {};

hold on;

376 h(end +1)=plot(purityByPd (1,:),’bo-’);

plot(purityByPd (1,:)-purityByPd (2,:),’b--’);

plot(purityByPd (1,:)+purityByPd (2,:),’b--’);

legends{end+1} = ’Purity ’;

h(end +1)=plot(completenessByPd (1,:),’gd-’);

381 plot(completenessByPd (1,:)-completenessByPd (2,:),’g--’);

plot(completenessByPd (1,:)+completenessByPd (2,:),’g--’);

legends{end+1} = ’Completeness ’;

h(end +1)=plot(deltaCardByPd (1,:),’ms -’);

plot(deltaCardByPd (1,:)-deltaCardByPd (2,:),’m--’);

386 plot(deltaCardByPd (1,:)+deltaCardByPd (2,:),’m--’);

legends{end+1} = ’Delta Cardinality ’;

legend(h,legends);
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xlabel(’Pd’);

set(gca ,’XTick’ ,1:length(pd));

391 set(gca ,’XTickLabel ’,pd);

saveas(gcf ,’6_Pd_sweep_uniform_logend ’,’fig’);

save 6_Pd_sweep_uniform_logend;

case 7 %CAT Pd (clear) sweep , all metrics

tic;

396 p.CAT = true;

pd = 0.02:0.04:1;

completenessByPd = zeros(2,length(pd));

purityByPd = zeros(2,length(pd));

deltaCardByPd = zeros(2,length(pd));

401 for pdIter = 1: length(pd)

p.CAT_Pd_clear = pd(pdIter);

mcRuns = 200;

completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

406 deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

411 deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityByPd (1,pdIter) = mean(purity);

completenessByPd (1,pdIter) = mean(completeness);

deltaCardByPd (1,pdIter) = mean(deltaCardinality);

416 purityByPd (2,pdIter) = std(purity);

completenessByPd (2,pdIter) = std(completeness);

deltaCardByPd (2,pdIter) = std(deltaCardinality);

end

time = toc;

421 figure;

h=[];

legends = {};

hold on;

h(end +1)=plot(pd,purityByPd (1,:),’bo -’);

426 plot(pd ,purityByPd (1,:)-purityByPd (2,:),’b--’);

plot(pd ,purityByPd (1,:)+purityByPd (2,:),’b--’);

legends{end+1} = ’Purity ’;

h(end +1)=plot(pd,completenessByPd (1,:),’gd-’);

plot(pd ,completenessByPd (1,:)-completenessByPd (2,:),’g--’);

431 plot(pd ,completenessByPd (1,:)+completenessByPd (2,:),’g--’);

legends{end+1} = ’Completeness ’;

h(end +1)=plot(pd,deltaCardByPd (1,:),’ms-’);

plot(pd ,deltaCardByPd (1,:)-deltaCardByPd (2,:),’m--’);

plot(pd ,deltaCardByPd (1,:)+deltaCardByPd (2,:),’m--’);

436 legends{end+1} = ’Delta Cardinality ’;

legend(h,legends);

xlabel(’Pd (clear)’);

saveas(gcf ,’7_Pd_clear_sweep_CAT ’,’fig’);

save 7_Pd_clear_sweep_CAT;

441 case 8 %CAT Pd (occluded) sweep , all metrics

tic;

p.CAT = true;

pd = 0.02:0.04:1;

completenessByPd = zeros(2,length(pd));

446 purityByPd = zeros(2,length(pd));

deltaCardByPd = zeros(2,length(pd));

for pdIter = 1: length(pd)

p.CAT_Pd_occluded = pd(pdIter);

mcRuns = 200;

451 completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns
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sim = makeSim(p);

456 completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityByPd (1,pdIter) = mean(purity);

461 completenessByPd (1,pdIter) = mean(completeness);

deltaCardByPd (1,pdIter) = mean(deltaCardinality);

purityByPd (2,pdIter) = std(purity);

completenessByPd (2,pdIter) = std(completeness);

deltaCardByPd (2,pdIter) = std(deltaCardinality);

466 end

time = toc;

figure;

h=[];

legends = {};

471 hold on;

h(end +1)=plot(pd,purityByPd (1,:),’bo -’);

plot(pd ,purityByPd (1,:)-purityByPd (2,:),’b--’);

plot(pd ,purityByPd (1,:)+purityByPd (2,:),’b--’);

legends{end+1} = ’Purity ’;

476 h(end +1)=plot(pd,completenessByPd (1,:),’gd-’);

plot(pd ,completenessByPd (1,:)-completenessByPd (2,:),’g--’);

plot(pd ,completenessByPd (1,:)+completenessByPd (2,:),’g--’);

legends{end+1} = ’Completeness ’;

h(end +1)=plot(pd,deltaCardByPd (1,:),’ms-’);

481 plot(pd ,deltaCardByPd (1,:)-deltaCardByPd (2,:),’m--’);

plot(pd ,deltaCardByPd (1,:)+deltaCardByPd (2,:),’m--’);

legends{end+1} = ’Delta Cardinality ’;

legend(h,legends);

xlabel(’Pd (occluded)’);

486 saveas(gcf ,’8_Pd_occluded_sweep_CAT ’,’fig’);

save 8_Pd_occluded_sweep_CAT;

case 9 %CAT Pd (occluded) vs p.nominalOccludedPdTrue

tic;

p.CAT = true;

491 %consider stopping false alarms?

pd = 0.01:0.01:0.5;

pm = 0.00:0.05:0.5;

for pdIter = 1: length(pd)

for pmIter = 1: length(pm)

496 p.CAT_Pd_occluded = pd(pdIter);

p.nominalOccludedPdTrue = pm(pmIter);

mcRuns = 200;

completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

501 deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

506 deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityByPd(pdIter ,pmIter) = mean(purity);

completenessByPd(pdIter ,pmIter) = mean(completeness);

deltaCardByPd(pdIter ,pmIter) = mean(deltaCardinality);

511 end

end

time = toc;

figure;

imagesc(purityByPd);

516 set(gca ,’XTick’ ,1:length(pm));

set(gca ,’XTickLabel ’,pm);

set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

colorbar;

117



www.manaraa.com

521 xlabel(’p measurement during occlusion ’);

ylabel(’Pd occluded ’);

title(’pd vs pm, purity , CAT’);

saveas(gcf ,’9_pd_vs_pm_purity ’,’fig’);

figure;

526 imagesc(completenessByPd);

set(gca ,’XTick’ ,1:length(pm));

set(gca ,’XTickLabel ’,pm);

set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

531 colorbar;

xlabel(’p measurement during occlusion ’);

ylabel(’Pd occluded ’);

title(’pd vs pm, completeness , CAT’);

saveas(gcf ,’9_pd_vs_pm_completeness ’,’fig’);

536 figure;

imagesc(deltaCardByPd);

set(gca ,’XTick’ ,1:length(pm));

set(gca ,’XTickLabel ’,pm);

set(gca ,’YTick’ ,1:length(pd));

541 set(gca ,’YTickLabel ’,pd);

colorbar;

xlabel(’p measurement during occlusion ’);

ylabel(’Pd occluded ’);

title(’pd vs pm, delta cardinality , CAT’);

546 saveas(gcf ,’9_pd_vs_pm_deltacard ’,’fig’);

save 9_Pd_Pm_CAT;

case 10 %CAT Pd (occluded) vs p.nominalOccludedPdTrue NO FALSE ALARMS

tic;

p.CAT = true;

551 p.pFalseAlarm = 0;

pd = 0.01:0.01:0.5;

pm = 0.00:0.05:0.5;

clear purityByPd completenessByPd deltaCard;

for pdIter = 1: length(pd)

556 for pmIter = 1: length(pm)

p.CAT_Pd_occluded = pd(pdIter);

p.nominalOccludedPdTrue = pm(pmIter);

mcRuns = 200;

completeness = zeros(1,mcRuns);

561 purity = zeros(1,mcRuns);

deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

566 purity(mcIter) = sim.purity;

deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityByPd(pdIter ,pmIter) = mean(purity);

completenessByPd(pdIter ,pmIter) = mean(completeness);

571 deltaCardByPd(pdIter ,pmIter) = mean(deltaCardinality);

end

end

time = toc;

figure;

576 imagesc(purityByPd);

set(gca ,’XTick’ ,1:length(pm));

set(gca ,’XTickLabel ’,pm);

set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

581 colorbar;

xlabel(’p measurement during occlusion ’);

ylabel(’Pd occluded ’);

title(’pd vs pm, purity , CAT’);

saveas(gcf ,’10 _pd_vs_pm_purity_noFA ’,’fig’);

586 figure;
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imagesc(completenessByPd);

set(gca ,’XTick’ ,1:length(pm));

set(gca ,’XTickLabel ’,pm);

set(gca ,’YTick’ ,1:length(pd));

591 set(gca ,’YTickLabel ’,pd);

colorbar;

xlabel(’p measurement during occlusion ’);

ylabel(’Pd occluded ’);

title(’pd vs pm, completeness , CAT’);

596 saveas(gcf ,’10 _pd_vs_pm_completeness_noFA ’,’fig’);

figure;

imagesc(deltaCardByPd);

set(gca ,’XTick’ ,1:length(pm));

set(gca ,’XTickLabel ’,pm);

601 set(gca ,’YTick’ ,1:length(pd));

set(gca ,’YTickLabel ’,pd);

colorbar;

xlabel(’p measurement during occlusion ’);

ylabel(’Pd occluded ’);

606 title(’pd vs pm, delta cardinality , CAT’);

saveas(gcf ,’10 _pd_vs_pm_deltacard_noFA ’,’fig’);

save 10 _Pd_Pm_CAT_noFA;

case 11 %vary the occlusion frequency / duration , unif

tic;

611 p.CAT = false;

occlusionDurMinMax = ...

[1, 2, 5, 7, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35

5, 7, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35, 38, 40];

pOcclusion = 0:0.01:0.2;

616 clear purityByPd completenessByPd deltaCard;

for occlusionDurIter = 1:size(occlusionDurMinMax ,2)

for pOcclusionIter = 1: length(pOcclusion)

p.minOcclusionDur = occlusionDurMinMax (1, occlusionDurIter);

p.maxOcclusionDur = occlusionDurMinMax (2, occlusionDurIter);

621 p.pOcclusion = pOcclusion(pOcclusionIter);

mcRuns = 200;

completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

deltaCardinality = zeros(1,mcRuns);

626 for mcIter = 1: mcRuns

sim = makeSim(p);

completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

deltaCardinality(mcIter) = sim.deltaCardinality;

631 end

purityByPd(occlusionDurIter ,pOcclusionIter) = mean(purity);

completenessByPd(occlusionDurIter ,pOcclusionIter) = mean(...

completeness);

deltaCardByPd(occlusionDurIter ,pOcclusionIter) = mean(...

deltaCardinality);

end

636 end

time = toc;

figure;

imagesc(purityByPd ,[0 ,1]);

set(gca ,’XTick’ ,1:length(pOcclusion));

641 set(gca ,’XTickLabel ’,pOcclusion);

set(gca ,’YTick’ ,1:size(occlusionDurMinMax ,2));

set(gca ,’YTickLabel ’,sprintf(’%d,%d|’,occlusionDurMinMax));

colorbar;

xlabel(’P occlusion per frame ’);

646 ylabel(’Occlusion Duration min/max’);

title(’pOcclusion vs occlusionDur , purity , Unif’);

saveas(gcf ,’11 _pd_vs_pm_purity_unif ’,’fig’);

figure;

imagesc(completenessByPd ,[0 ,1]);
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651 set(gca ,’XTick’ ,1:length(pOcclusion));

set(gca ,’XTickLabel ’,pOcclusion);

set(gca ,’YTick’ ,1:size(occlusionDurMinMax ,2));

set(gca ,’YTickLabel ’,sprintf(’%d,%d|’,occlusionDurMinMax));

colorbar;

656 xlabel(’P occlusion per frame ’);

ylabel(’Occlusion Duration min/max’);

title(’pOcclusion vs occlusionDur , completeness , Unif’);

saveas(gcf ,’11 _pd_vs_pm_completeness_unif ’,’fig’);

figure;

661 imagesc(deltaCardByPd ,[0 ,1]);

set(gca ,’XTick’ ,1:length(pOcclusion));

set(gca ,’XTickLabel ’,pOcclusion);

set(gca ,’YTick’ ,1:size(occlusionDurMinMax ,2));

set(gca ,’YTickLabel ’,sprintf(’%d,%d|’,occlusionDurMinMax));

666 colorbar;

xlabel(’P occlusion per frame ’);

ylabel(’Occlusion Duration min/max’);

title(’pOcclusion vs occlusionDur , delta cardinality , Unif’);

saveas(gcf ,’11 _pd_vs_pm_deltacard_unif ’,’fig’);

671 save 11 _Pd_Pm_unif;

case 12 %vary the occlusion frequency / duration , CAT

tic;

p.CAT = true;

occlusionDurMinMax = ...

676 [1, 2, 5, 7, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35

5, 7, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35, 38, 40];

pOcclusion = 0:0.01:0.2;

clear purityByPd completenessByPd deltaCard;

for occlusionDurIter = 1:size(occlusionDurMinMax ,2)

681 for pOcclusionIter = 1: length(pOcclusion)

p.minOcclusionDur = occlusionDurMinMax (1, occlusionDurIter);

p.maxOcclusionDur = occlusionDurMinMax (2, occlusionDurIter);

p.pOcclusion = pOcclusion(pOcclusionIter);

mcRuns = 200;

686 completeness = zeros(1,mcRuns);

purity = zeros(1,mcRuns);

deltaCardinality = zeros(1,mcRuns);

for mcIter = 1: mcRuns

sim = makeSim(p);

691 completeness(mcIter) = sim.meanCompleteness;

purity(mcIter) = sim.purity;

deltaCardinality(mcIter) = sim.deltaCardinality;

end

purityByPd(occlusionDurIter ,pOcclusionIter) = mean(purity);

696 completenessByPd(occlusionDurIter ,pOcclusionIter) = mean(...

completeness);

deltaCardByPd(occlusionDurIter ,pOcclusionIter) = mean(...

deltaCardinality);

end

end

time = toc;

701 figure;

imagesc(purityByPd ,[0 ,1]);

set(gca ,’XTick’ ,1:length(pOcclusion));

set(gca ,’XTickLabel ’,pOcclusion);

set(gca ,’YTick’ ,1:size(occlusionDurMinMax ,2));

706 set(gca ,’YTickLabel ’,sprintf(’%d,%d|’,occlusionDurMinMax));

colorbar;

xlabel(’P occlusion per frame ’);

ylabel(’Occlusion Duration min/max’);

title(’pOcclusion vs occlusionDur , purity , CAT’);

711 saveas(gcf ,’12 _pd_vs_pm_purity_CAT ’,’fig’);

figure;

imagesc(completenessByPd ,[0 ,1]);

set(gca ,’XTick’ ,1:length(pOcclusion));
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set(gca ,’XTickLabel ’,pOcclusion);

716 set(gca ,’YTick’ ,1:size(occlusionDurMinMax ,2));

set(gca ,’YTickLabel ’,sprintf(’%d,%d|’,occlusionDurMinMax));

colorbar;

xlabel(’P occlusion per frame ’);

ylabel(’Occlusion Duration min/max’);

721 title(’pOcclusion vs occlusionDur , completeness , CAT’);

saveas(gcf ,’12 _pd_vs_pm_completeness_CAT ’,’fig’);

figure;

imagesc(deltaCardByPd ,[0 ,1]);

set(gca ,’XTick’ ,1:length(pOcclusion));

726 set(gca ,’XTickLabel ’,pOcclusion);

set(gca ,’YTick’ ,1:size(occlusionDurMinMax ,2));

set(gca ,’YTickLabel ’,sprintf(’%d,%d|’,occlusionDurMinMax));

colorbar;

xlabel(’P occlusion per frame ’);

731 ylabel(’Occlusion Duration min/max’);

title(’pOcclusion vs occlusionDur , delta cardinality , CAT’);

saveas(gcf ,’12 _pd_vs_pm_deltacard_CAT ’,’fig’);

save 12 _Pd_Pm_CAT;

end

Listing A.2: (costTest/makeSim.m)
function sim = makeSim(p)

% Function sim = makeSim(p)

% Create one run through the simulator.

4 %

% Input:

% p - parameter structure for the simulation with fields:

%

% Output:

9 % sim - output structure for the simulation

%

% Andrew C. Rice , andrewcrice@gmail.com

% Preparation

14 bg = makeBackground(p.time , p.pOcclusion , p.minOcclusionDur , p.maxOcclusionDur);

tgt = makeTarget(p.time , p.pTgtArrival , p.pTgtDeparture);

pDetectTrue = ones(1,p.time);

pDetectTrue(bg) = p.nominalClearPdTrue;

pDetectTrue (~bg) = p.nominalOccludedPdTrue;

19 meases = makeMeasurements(tgt , pDetectTrue , p.pFalseAlarm);

% Track costing

if p.CAT

pDetectAssumed = ones(1,p.time);

24 pDetectAssumed(bg) = p.CAT_Pd_clear;

pDetectAssumed (~bg) = p.CAT_Pd_occluded;

betaNTassumed = ones(1,p.time);

betaNTassumed(bg) = p.CAT_BetaNT_clear;

betaNTassumed (~bg) = p.CAT_BetaNT_occluded;

29 else

pDetectAssumed = ones(1,p.time) * p.unif_Pd;

betaNTassumed = ones(1,p.time) * p.unif_BetaNT;

end

betaFAassumed = pDetectAssumed * p.BetaFA_multiplier;

34 costInstant = trackInstantaneousCost(meases , pDetectAssumed , ...

betaFAassumed , p.kssMean , p.kssVar);

costCumulative = NaN(1,length(costInstant));

costWindowed = costCumulative;

39 % Track maintenance

allOrigins = []; %frame indeces of track origins

allConfirmations = []; %frame indeces of track confirmations

allDrops = []; %frame indeces of track drops
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trk = zeros(1,p.time); %vector which is zero when no mature track exists ,

44 %and a monatonically increasing track ID when a

%mature track does exist.

trkID = 0;

maintenanceFrame = 1;

while maintenanceFrame <= p.time

49 [origin ,confirmed] = whenConfirmed(meases , costInstant , pDetectAssumed ,...

p.Nconf , p.pssConf , betaNTassumed , betaFAassumed , ...

maintenanceFrame);

if confirmed > 0

costCumulative(origin:end) = cumsum(costInstant(origin:end));

54 thisCostWindowed = trackWindowedCost(costInstant , p.Ndrop , origin);

costWindowed(origin:end) = thisCostWindowed(origin:end);

dropped = whenDropped(thisCostWindowed , pDetectAssumed , p.Mdrop , ...

p.Ndrop , p.pssDrop , betaFAassumed , origin , confirmed +1);

allOrigins(end+1) = origin;

59 allConfirmations(end+1) = confirmed;

allDrops(end +1) = dropped;

trkID = trkID +1;

if dropped == 0

%ran out of frames before dropping

64 trk(confirmed:end) = trkID;

break;

else

trk(confirmed:dropped) = trkID;

maintenanceFrame = dropped +1;

69 costCumulative(maintenanceFrame:end) = NaN;

costWindowed(maintenanceFrame:end) = NaN;

end

else

%no (additional) confirmations to report

74 break;

end

end

% Metrics

79 if trkID == 0

%never formed a track , special case of metrics

sim.meanCompleteness = 0;

sim.purity = 0;

sim.deltaCardinality = 1; %represents worst possible

84 else

sim.meanCompleteness = sum(tgt .* (trk > 0)) / sum(tgt);

trkIDwhenTracked = trk(trk ~=0);

sim.purity = sum(trk==mode(trkIDwhenTracked)) / length(trkIDwhenTracked);

sim.deltaCardinality = sum(abs(tgt ~= (trk > 0))) / p.time;

89 end

if any(isnan([sim.meanCompleteness , sim.purity , sim.deltaCardinality ]))

warning;

end

94 % Output

sim.tgt = tgt;

sim.meases = meases;

sim.trk = trk;

sim.confirmed = allConfirmations;

99 sim.dropped = allDrops;

sim.costInstant = costInstant;

sim.costCumulative = costCumulative;

sim.costWindowed = costWindowed;

sim.Pd = pDetectTrue;

Listing A.3: (costTest/makeBackground.m)
function bg = makeBackground(time , pOcclusion , minOcclusionDur , ...

2 maxOcclusionDur)
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% Function bg = makeBackground(time , pOcclusion , minOcclusionDur , ...

% maxOcclusionDur)

% Compute a random background which is characterized by the presence

% or absence of occlusions. Any number of occlusions may occur.

7 % Input:

% time - number of frames for the background lifetime.

% pOcclusion - per -frame probability of an occlusion occuring

% minOcclusionDur - minimum length of an occlusion

% maxOcclusionDur - maximum length of an occlusion

12 %

% Output:

% bg - [1xtime] vector of background truth (1= unoccluded , 0= occluded)

%

% Andrew C. Rice , andrewcrice@gmail.com

17
bg = true(1,time);

now = 0;

while true

now = now + randGeometric(pOcclusion);

22 if now > time; break; end;

duration = randi([ minOcclusionDur , maxOcclusionDur ]);

duration = min(duration , time -now);

bg(now:now+duration) = false;

end

Listing A.4: (costTest/makeTarget.m)
function tgt = makeTarget(time , pArrival , pDeparture)

% Function tgt = makeTarget(time , pArrival , pDeparture)

% Compute a random target arrival and departure.

4 % Input:

% time - number of frames for the target lifetime.

% pArrival - per -frame probability of a target arriving

% pDeparture - per -frame probability of a target departing

%

9 % Output:

% tgt - [1xtime] vector of target truth (1= present , 0= absent)

%

% Andrew C. Rice , andrewcrice@gmail.com

14 tgt = false(1,time);

arrive = randGeometric(pArrival);

if arrive < time

depart = randGeometric(pDeparture);

if arrive + depart < time

19 tgt(arrive:arrive+depart) = true;

else

%never departed

tgt(arrive:end) = true;

end

24 else

%never arrived

end

Listing A.5: (costTest/makeMeasurements.m)
function meases = makeMeasurements(tgt , pDetect , pFalseAlarm)

% Function meases = makeMeasurements(tgt , pDetect , pFalseAlarm)

% Compute a measurement sequence for the target based upon its

4 % presence and probability of detection at each frame.

% Input:

% tgt - [1xn] target presence/absence vector

% pDetect - [1xn] probability of detection vector

% pFalseAlarm - per -frame probability of a false alarm

9 %
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% Output:

% meases - [1xn] vector of measurements (1= measurement , 0=no measurement)

%

% Andrew C. Rice , andrewcrice@gmail.com

14
meases = false(size(tgt));

% create false alarm measurements

meases(rand(1,length(meases)) < pFalseAlarm) = true;

19
% create target measurements according to Pd

meases(rand(1,length(meases)) < (tgt .* pDetect)) = true;

Listing A.6: (costTest/plotSim.m)
function plotSim(sim)

% Function confirmed = plotsim(sim)

% Plot the output from the simulation run.

4 % Input:

% sim - structure of simulation output

%

% Output:

% n/a

9 %

% Andrew C. Rice , andrewcrice@gmail.com

% time frames

t = 1: length(sim.tgt);

14
% plot prep

figure (100);

clf;

hold on; h = []; legends = {};

19 minT = 1; % first frame to plot

axMain = gca; % the main plot area for the cost

marg = 0.15; %margin

doTexts = true;

doLegend = true;

24
%plot pd

bump = 0.03; % a little space between the axes

axPd = axes(’Position ’, ...

[marg ,0.8*(1 -2* marg)+marg+bump ,1-2*marg ,0.15*(1 -2* marg)-bump], ...

29 ’Color’,’none’);

hold on;

plot(t, sim.Pd, ’k’, ’LineWidth ’, 2);

ylabel(’$P_\mathrm{D}$’,’Interpreter ’,’latex’);

axis([minT ,max(t) ,0,1]);

34
%plot detections , truth

axDet = axes(’Position ’, ...

[marg ,0.7*(1 -2* marg)+marg+bump ,1-2*marg ,0.1], ...

’Color’,’none’);

39 hold on;

h(end +1) = plot(t(sim.tgt), 0.02* ones(1,sum(sim.tgt)),’k.’,’MarkerSize ’ ,7);

legends{end+1} = ’Target ’;

hit = find(sim.meases .* sim.tgt);

if ~isempty(hit)

44 h(end +1) = plot(t(hit), 0.0* ones(1,length(hit)),’g.’,’MarkerSize ’ ,7);

legends{end+1} = ’Measurement ’;

end

falseAlarm = find(sim.meases .* ~sim.tgt);

if ~isempty(falseAlarm)

49 h(end +1) = plot(t(falseAlarm), 0.0* ones(1,length(falseAlarm)), ...

’rx’,’MarkerSize ’,7,’LineWidth ’ ,1);

legends{end+1} = ’False Alarm’;
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end

misses = find(~sim.meases .* sim.tgt);

54 if ~isempty(misses)

h(end +1) = plot(t(misses), 0.0* ones(1,length(misses)), ...

’r.’,’MarkerSize ’,7,’LineWidth ’ ,1);

legends{end+1} = ’Miss’;

end

59 axis([minT ,max(t) ,0,0.1]);

axis off;

%plot windowed cost

axes(axMain);

64 h(end +1) = plot(t, sim.costWindowed , ’m-s’, ’LineWidth ’,1,’MarkerSize ’ ,7);

legends{end+1} = ’$\bar{C}$’;

axisCost = axis;

axisCost (1:2) = [minT ,max(t)];

axis(axisCost);

69 %plot confirmed

for confirmed = sim.confirmed

if confirmed > 0

plot(confirmed *[1,1], [axisCost (3),axisCost (4)],’g--’,’LineWidth ’ ,1);

if doTexts

74 text(confirmed , axisCost (3) +2*( axisCost (4)-axisCost (3))/3, ...

’$\Longleftarrow \mathrm{T}_\mathrm{conf} \ge C$’, ...

’Interpreter ’,’latex’);

end

end

79 end

%plot dropped

for dropped = sim.dropped

if dropped > 0

plot(dropped *[1,1], [axisCost (3),axisCost (4)],’r--’,’LineWidth ’ ,1);

84 if doTexts

text(dropped , axisCost (3)+( axisCost (4)-axisCost (3))/3, ...

’$\Longleftarrow \bar{C} \ge \mathrm{T}_\mathrm{drop}$’, ...

’Interpreter ’,’latex’);

end

89 end

end

%finish the main plot

ylabel(’cost’,’Interpreter ’,’latex’);

xlabel(’time’,’Interpreter ’,’latex’);

94 set(axMain ,’Position ’,[marg ,marg ,1-2*marg ,0.7*(1 -2* marg)],’Color ’,’none’);

%create legend box

if doLegend

axes(axMain);

99 lh = legend(h, legends);

set(lh ,’Interpreter ’,’latex’,’Position ’ ,[0.7 ,0.25 ,0.15 ,0.25]);

end

%print plot

104 set(gcf ,’Position ’ ,[680 658 560*3 280*1.5]); %bigger

set(gcf ,’PaperPositionMode ’,’auto’);

print(’-depsc’,’winDropPlot.eps’);

Listing A.7: (costTest/randGeometric.m)
function g = randGeometric(p,n)

2 % Function g = randGeometric(p,n)

% Compute random draws from the discrete geometric distribution.

% Input:

% p - probability of success for independent Bernoulli trial

% (default 0.5)

7 % n - number of draws to return from the geometric discrete distribution

%
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% Output:

% g - [1xn] vector of random draws from the geometric distribution

%

12 % Cited:

% Simulating Discrete (Geometric , Poisson and Zero -Inflated Poisson ,

% Negative Binomial and Zero -Inflated Negative Binomial) Random Variables

% from http ://www.ats.ucla.edu/stat/stata/code/discrete_rv_v2.htm

% (accessed 2011 -04 -05)

17 %

% Andrew C. Rice , andrewcrice@gmail.com

if nargin < 1; p = 0.5; end

if nargin < 2; n = 1; end

22 if p > 1; p = 1; end

if p < eps

g = Inf;

return

end

27 u = rand(1,n);

g = floor(log(u)/log(1-p))+1;

Listing A.8: (costTest/trackInstantaneousCost.m)
function costInstant = trackInstantaneousCost(meases , pDetectAssumed , ...

2 betaFAassumed , kssMean , kssVar)

% Function costInstant = trackInstantaneousCost(meases , pDetectAssumed , ...

% betaFAassumed , kssMean , kssVar)

% Compute the per -frame instantaneous cost of the track.

% Input:

7 % meases - [1xn] measurement presence/absence vector

% pDetectAssumed - [1xn] the assumed probability of detection vector

% betaFAassumed - [1xn] the assumed false alarm rate

% kssMean - the steady -state kinematic distance ^2

% kssVar - variance of the steady -state kinematic distance ^2

12 %

% Output:

% costInstant - [1xn] vector of the instantaneous cost at each frame

%

% Andrew C. Rice , andrewcrice@gmail.com

17
n = length(meases);

costInstant = zeros(1,n);

% the kinmatic portion of the cost must be randomly drawn since the actual

22 % tracker is missing

noise = randn(1,n);

costHit = -log(pDetectAssumed ./ betaFAassumed) + (kssMean+sqrt(kssVar).*noise);

costMiss = -log(1- pDetectAssumed);

27
% the instantaneous cost

costInstant(meases) = costHit(meases);

costInstant (~ meases) = costMiss (~ meases);

Listing A.9: (costTest/trackWindowedCost.m)
function costWindowed = trackWindowedCost(costInstant , winLen , origin)

% Function costWindowed = trackWindowedCost(costInstant , winLen)

% Compute the per -frame windowed cost of the track. The window

4 % undergoes a filling period initially , such that early costs will

% perhaps include less than winLen elements. The window then slides

% with time.

% Input:

% costInstant - [1xn] instantaneous cost vector

9 % winLen - window length
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% origin - frame index of the origin of the track

%

% Output:

% costWindowed - [1xn] vector of the windowed cost at each frame. Nan

14 % prior to origin

%

% Andrew C. Rice , andrewcrice@gmail.com

costWindowed = zeros(size(costInstant));

19 for winEnd = 1: length(costInstant)

if winEnd < origin

costWindowed(winEnd) = NaN;

else

winStart = max(origin ,winEnd -winLen +1);

24 costWindowed(winEnd) = sum(costInstant(winStart:winEnd));

end

end

Listing A.10: (costTest/whenConfirmed.m)
function [origin ,confirmed] = whenConfirmed(meases , cost , Pd, Nconf , ...

pssConf , betaNT , betaFA , beginAt)

% Function [origin ,confirmed] = whenConfirmed(meases , cost , Pd, Nconf , ...

4 % pssConf , betaNT , betaFA , beginAt)

% Apply the track confirmation logic to determine when (if) the track

% reaches confirmation status. Single frame initiation is used such

% that each measurement is a candidate for becoming the origin of the

% track. The chosen origin is the measurement which results in the

9 % earliest confirmation. This mimics a simple tracking system.

% Input:

% meases - [1xn] boolean measurement vector

% cost - [1xn] instantaneous cost vector (NOT a windowed cost)

% Pd - [1xn] probability of detection (assumed)

14 % Nconf - number of updates for the prototype benchmark track

% pssConf - steady state kinematic p(z|x)

% betaNT - [1xn] assumed new track density

% betaFA - [1xn] assumed false alarm density

% beginAt - Index of first frame to consider the origin.

19 %

% Output:

% origin - index of the selected origin frame in [1,n], or 0 if never

% confirmed

% confirmed - index of the frame of confirmation. In [1,n], or 0 if never

24 % confirmed.

%

% Andrew C. Rice , andrewcrice@gmail.com

candidateOrigins = find(meases);

29 bestConfirmed = Inf;

bestOrigin = 0;

% the following for loop and while loop test potential origin and

% confirmation frames. Note that a later origin may sometimes result in a

% quicker confirmation depending on the statistics involved. Hence the

34 % exhaustive search. In the real tracker , this mimics competing tracks

% within the MHT.

for candidateOrigin = candidateOrigins

if candidateOrigin < beginAt

%too early in sequence

39 continue

end

thisCost = cost;

thisCost (1: candidateOrigin -1) = 0;

thisCostCum = cumsum(thisCost);

44 frameIter = candidateOrigin;

while frameIter < length(cost)

thisMinPd = min(Pd(candidateOrigin:frameIter));
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thisThresh = -log(betaNT(candidateOrigin)/betaFA(candidateOrigin)) ...

- Nconf * log(thisMinPd*pssConf/betaFA(frameIter));

49 if thisCostCum(frameIter) < thisThresh

% a confirmation , test to see if it ’s the best so far

if frameIter < bestConfirmed

bestConfirmed = frameIter;

bestOrigin = candidateOrigin;

54 end

break; %end the while loop for this candidateOrigin

end

frameIter = frameIter + 1;

end

59 end

if bestConfirmed == Inf

% never confirmed

confirmed = 0;

origin = 0;

64 else

confirmed = bestConfirmed;

origin = bestOrigin;

end

Listing A.11: (costTest/whenDropped.m)
function dropped = whenDropped(cost , Pd, Mdrop , Ndrop , pssDrop , ...

betaFA , origin , beginAt)

3 % Function dropped = whenDropped(cost , Pd, Mdrop , Ndrop , pssDrop , ...

% betaNT , betaFA , origin , beginAt)

% Apply the track drop logic to determine when (if) the track

% reaches drop status.

% Input:

8 % cost - [1xn] windowed cost vector (NOT the instantaneous cost)

% Pd - [1xn] probability of detection (assumed)

% Mdrop - number of missed updates for the prototype benchmark track

% Ndrop - window -of-regard length for the prototype benchmark track

% pssDrop - steady state kinematic p(z|x)

13 % betaFA - [1xn] assumed false alarm density

% origin - Index of the first frame in which the track existed

% beginAt - Index of first frame to consider a drop. Useful when dropping

% shouldn ’t be considered until after confirmation.

%

18 % Output:

% dropped - index of the frame in [1,n], or 0 if never dropped

%

% Andrew C. Rice , andrewcrice@gmail.com

23 % Ignore the first beginAt -1 frames

thresh (1: beginAt -1) = Inf;

% Compute a threshold for all subsequent frames

for winEnd = beginAt:length(cost)

winStart = max([1,winEnd -Ndrop+1,origin ]);

28 if(winEnd -winStart +1) >= Ndrop

%window is full

Mnew = Mdrop;

Nnew = Ndrop;

else

33 %window not yet full

Nnew = winEnd -winStart +1;

Mnew = Mdrop * (Nnew/Ndrop);

end

minPd = min(Pd(winStart:winEnd));

38 thresh(winEnd) = Mnew * -log(1-minPd) + (Nnew -Mnew) * ...

(-log(minPd/betaFA(winEnd))+pssDrop);

end

dropped = find(cost > thresh ,1,’first’);
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43 if isempty(dropped)

dropped = 0;

end
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35. Mendenhall, M.J. and E. Merényi. “Relevance-Based Feature Extraction from
Hyperspectral Images”. IEEE Transactions on Neural Networks, 19, Apr 2008.

36. Meyer, R.D., K.J. Kearney, Z. Ninkov, C.T. Cotton, P. Hammond, and B.D.
Statt. “RITMOS: a Micromirror-Based Multi-Object Spectrometer”. Ground-
based Instrumentation for Astronomy, 5492(1):200–219, 2004.

37. Muster, R. Exploitation of Geographic Information Systems for Vehicular Desti-
nation Prediction. Master’s thesis, Air Force Institute of Technology, 2009.

38. Neff, T. “Tall Order”. C4ISR Journal, April 2010. URL
http://www.c4isrjournal.com/story.php?F=4452148. [accessed 25 Jan-
uary 2011].

132



www.manaraa.com

39. Paris, N.D. LQG/LTR Tilt and Tip Control for the Starfire Optical Range 3.5
Meter Telescopes Adaptive Optics System. Master’s thesis, Air Force Institute of
Technology, 2006.

40. Pendall, D.W. “Persistent Surveillance and Its Implications for the Common
Operating Picture”. Military Review, 85(6):41, 2005. ISSN 0026-4148.

41. Pierce, S. Context Aided Tracking and Track Prediction in Aerial Video Surveil-
lance. Master’s thesis, Air Force Institute of Technology, 2008.

42. Pyo, J.S., D.H. Shin, and T.K. Sung. “Development of a Map Matching Method
Using the Multiple Hypothesis Technique”. Intelligent Transportation Systems,
2001. Proceedings. 2001 IEEE, 23–27. IEEE, 2001.

43. Reid, D. “An Algorithm for Tracking Multiple Targets”. Automatic Control,
IEEE Transactions on, 24(6):843–854, 1979. ISSN 0018-9286.

44. Ren, H. and C.I. Chang. “Automatic Spectral Target Recognition in Hyper-
spectral Imagery”. Aerospace and Electronic Systems, IEEE Transactions on,
39(4):1232–1249, 2003.

45. Rice, A.C., J.R. Vasquez, J.P. Kerekes, and M.J. Mendenhall. “Persistent Hy-
perspectral Adaptive Multi-Modal Feature-Aided Tracking”. Algorithms and
Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV,
7334(1):73340M, 2009.

46. Robertson, D.C., A. Berk, and L.S. Bernstein. “MODTRAN: A Moderate Reso-
lution Model for LOWTRAN 7”, 1989.

47. Romberg, J. “Imaging via Compressive Sampling”. Signal Processing Magazine,
IEEE, 25(2):14–20, 2008.

48. Rose, L.J. “Air Force Research Laboratory’s Focused Long Term Challenges”.
volume 6981. SPIE, 2008.

49. Salem, F. and M. Kafatos. “Hyperspectral Image Analysis for Oil Spill Mit-
igation”. Paper presented at the 22nd Asian Conference on Remote Sensing,
volume 5, 9. 2001.

50. Sato, A. and K. Yamada. “Generalized Learning Vector Quantization”. David S.
Touretzky, Michael C. Mozer, and Michael E. Hasselmo (editors), Advances in
Neural Information Processing Systems 8: Proceedings of the 1995 Conference,
423–429. MIT Press, Cambridge, MA, 1996.

51. Schott, J.R. Remote Sensing: the Image Chain Approach, 2nd ed. Oxford Uni-
versity Press, Oxford, NY, 2007.

52. Schott, J.R., S.D. Brown, R.V. Raqueno, H.N. Gross, and G. Robinson. “Ad-
vanced Synthetic Image Generation Models and Their Application to Multi-
/Hyperspectral Algorithm Development”. 27th AIPR Workshop: Advances in
Computer-Assisted Recognition, 3584(1):211–220, 1999.

133



www.manaraa.com

53. Secrest, B.R. and J.R. Vasquez. “Optimal Spatial Sampling of Hyperspectral
Imagery for Fusion with Panchromatic Video in Multitarget Tracking”. Sensors
Applications Symposium, 2009. SAS 2009. IEEE, 255–260. IEEE, 2009.

54. Soliman, N. Hyperspectral-Augmented Target Tracking. Master’s thesis, Air Force
Institute of Technology, 2008.

55. Tahk, M. and J.L. Speyer. “Target Tracking Problems Subject to Kinematic
Constraints”. Automatic Control, IEEE Transactions on, 35(3):324–326, 1990.

56. Thenkabail, P.S., R.B. Smith, and E. DePauw. “Hyperspectral Vegetation Indices
and Their Relationships with Agricultural Crop Characteristics”. Remote Sens.
Environ., 71, 2000.

57. Wald, A. and J. Wolfowitz. “Optimum Character of the Sequential Probability
Ratio Test”. The Annals of Mathematical Statistics, 19(3):326–339, 1948. ISSN
0003-4851.

58. Yuhas, R.H., A.F.H. Goetz, and J.W. Boardman. “Discrimination Among Semi-
Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algo-
rithm”. Summaries of the Third Annual JPL Airborne Geoscience Workshop,
volume 1, 147–149. Pasadena, CA: JPL Publication, 1992.

134



www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

16–06–2011 Master’s Thesis June 2007 — June 2011

Context-Aided Tracking with
Adaptive Hyperspectral Imagery

DACA99–99–C–9999

n/a

Andrew C. Rice

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/11-43

Air Force Research Laboratory (Karmon M. Vongsy)
2241 Avionics Circle
Wright-Patterson Air Force Base, OH 45433
(937)528-8285 Karmon.Vongsy@wpafb.af.mil

AFRL/RYAT

Approval for public release; distribution is unlimited.

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

A methodology for the context-aided tracking of ground vehicles in remote airborne imagery is developed in which a
background model is inferred from hyperspectral imagery. The materials comprising the background of a scene are
remotely identified and lead to this model. Two model formation processes are developed: a manual method, and method
that exploits an emerging adaptive, multiple-object-spectrometer instrument. A semi-automated background modeling
approach is shown to arrive at a reasonable background model with minimal operator intervention. A novel, adaptive,
and autonomous approach uses a new type of adaptive hyperspectral sensor, and converges to a 66% correct background
model in 5% the time of the baseline – a 95% reduction in sensor acquisition time. A multiple-hypothesis-tracker is
incorporated, which utilizes background statistics to form track costs and associated track maintenance thresholds. The
context-aided system is demonstrated in a high-fidelity tracking testbed, and reduces track identity error by 30%.

tracking, context-aided tracking, hyperspectral, hyperspectral imagery, hyperspectral exploitation, adaptive hyperspectral
imagery, remote sensing
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